Neural network based silent error detector

Chen Wang

Silent data corruption (SDC) TABLE II: The impact of bit flips in different locations on the value 1.0 in single-precision floating point.

Flipped bit	Value	Deviation
- · · ·	1.0	0
31	-1.0	2
30	Infinity	Infinity
29	5.421011E-20	≈ 1
27	1.5258789E-5	0.99998474121
25	0.0625	0.9375
22	1.5	0.5
20	1.25	0.25
18	1.03125	0.03125
10	1.0004883	4.883e-4
5	1.0000038	3.8e-6
0	1.0000001	1e-7

TABLE III: Error positions

Error bit position Value changes App From: 0.9999999999999999999 12 Sod To: 0.7499999999999999989 From: 1.0 BrioWU 11 To: 0.5 From: 0.91620054602679901 BlastBS 16 To: 0.93182554602679901 From: 0.69874154473510708 OrszagTang 8 To: 0.002729459159121512

Silent data corruption (SDC)

Some movies

$$I = \frac{\text{sum}(\text{abs}(v_{correct} - v_{corrupted}))}{\text{sum}(v_{correct})}$$

Impact of SDC

TABLE IV: The impact of bit flips in different locations on the final result of applications. Errors in the top bits are significantly worse than errors in lower bits.

Арр	bits 1-20	bits 21-40	bits 41-63
Sedov	16.62% (59187.704)	0.36% (5.13e-4)	0.36% (5.13e-4)
Sod	20.43% (0.0333)	0.05% (7.7391e-8)	0.05% (7.491e-8)
BrioWu	nan	0.04% (2.443e-6)	0.04% (2.443e-6)
BlastBS	nan	0.20% (2.685e-5)	0.20% (2.685e-5)
DMReflection	0.55% (0.1763)	0.10% (4.137e-3)	0.10% (4.137e-3)
OrszagTang	nan	0.20% (4.855e-5)	0.20% (4.855e-5)

Related Work

•Two Categories:

- Temporal detector
- Spatial detector

•Prediction Method:

- Curve fitting
- Machine learning

State-of-the-art: adaptive impact driven detector (AID)

Limitations of current work

- High memory footprint (4x for AID)
- High overhead
- Need to run the detector at ever iteration
- Recall & False positive
- Unpractical hypothesis

(b) An error occurs part-way through the computation within a single iteration. The application may smooth the error to some extent, making detection more difficult.

Fig. 3: System workflow: The application is used to generate training samples that are either clean or have artificial errors injected. A neural net is then trained on this dataset, and can then be used to detect errors in the application.

System Overview

Neural network architecture

self.conv = nn.Sequential(
nn.Conv2d(len(variables), 64, 5, stride=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(3, stride=1),

nn.Conv2d(64, 64, 3, stride=1), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(3, stride=1),

nn.Conv2d(64, 96, 3, stride=1), nn.BatchNorm2d(96), nn.ReLU(), nn.Conv2d(96, 96, 3, stride=2), nn.BatchNorm2d(96), nn.ReLU(),

nn.Conv2d(96, 64, 3, stride=2), nn.BatchNorm2d(64), nn.ReLU(), nn.Conv2d(64, 32, 3, stride=1), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(3, stride=1)

Our Methods

Our Methods

Collect training/testing data

1. Clean data

we run each application for 1000 iterations with 10 different cases (initial conditions). We output variables we want to protect at every 5 iterations. The mesh size is set to 480×480 , and we split it into 60×60 windows with the overlapping of 20

2. Corrupted data

- Randomly flip a bit at random positions.
- Restart from a corrupted dataset.
- 3. K-propagation dataset
 - Restart from a corrupted and save the corrupted data of following k iterations

Split data into blocks

• Allow concurrent detection

Experimenta I Setup

• Blue Waters

- Each compute node has 2 AMD 6276 Interlagos CPUs and 64GM of memory
- Used to collect the training/testing dataset
- Nvidia DGX-1
 - 8 Tesla P100 GPUs
 - Used to train and test the detector

Metrics

- Recall: the number of errors detected over the number of total errors
- False positive (FP): a time step is considered false positive if the detector reported an error when no error is present.

Fig. 4: Recall comparison with AID. Our detector achieves higher recall, outperforming AID.

Fig. 5: False positive comparison with AID. Our detector has a significantly lower false positive rate.

Comparison

Detect after multiple iterations

Trained with kpropagation dataset

trained with 0-propagation dataset trained with 5-propagation dataset

Fig. 7: Detecting errors in heat diffusion program with the neural network trained with 0- and 5-propagation dataset

Future Work

- Checking whether errors that are not detected by our detector are smoothed over following iterations and do not corrupt the final result.
- How about detecting SDC in compressed (lossy) data ?
- Reduce overhead (0.011x on GPU and 2.951x on CPU)

