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Abstract—Deep Learning (DL) is increasingly applied across
various fields to solve complex scientific challenges in modern
high-performance computing (HPC) systems that are beyond
the reach of traditional algorithms. Training DL models for
scientific applications involves processing multi-terabyte datasets
in each epoch. The data access behavior during DL training
exposes optimization opportunities to cache these datasets in
near-compute storage accelerators in HPC systems, enhancing
I/O throughput. However, current middleware solutions employ
near-compute storage accelerators primarily as exclusive caches,
which limits the effectiveness of cache access locality. To
address this problem, we introduce DYAD, a system designed
to maximize sample locality in the cache, thereby significantly
increasing I/O throughput in HPC systems.

DYAD optimizes I/O for DL training based on three key
features. First, DYAD boosts inter-node access speeds by using
a novel streaming RPC with RDMA protocol, achieving a
1.25x performance gain over state-of-the-art solutions. Second,
DYAD further enhances inter-node access by coordinating data
movement, which mitigates network congestion and increases
throughput for inter-node accesses by up to 8.78x. Last, DYAD
uses smart metadata caching that outperforms traditional global
metadata access methods by several orders of magnitude in terms
of lookup throughput. We demonstrate how DYAD accelerates
large-scale DL training on a high-end HPC cluster with 512 GPUs
by up to 10.82x faster epochs compared to UnifyFS by performing
locality-aware caching on near-compute storage accelerators.

Index Terms—caching, deep learning, I/O performance, mid-
dleware, HPC, sample sharing, RDMA-enabled.

I. INTRODUCTION

Deep Learning (DL) training is a core part of many
high-performance computing (HPC) workloads in scientific
domains such as cosmology [1, 2], materials science [3, 4],
and biology [5, 6]. DL training’s efficiency depends on
matching DL computation on the GPU with the I/O
throughput achieved to read the dataset. DL training has
three unique features that differentiate it from traditional
scientific workloads [7]. First, DL training depends on a large
number of dataset samples to achieve the generalization of
DL models for solving new scientific problems [4]. Second,
DL training iterates over this large dataset once per epoch
to allow DL models to converge on common solutions for a
given dataset [8, 9]. Finally, DL training shuffles this dataset
between epochs to reduce dataset order bias while training
DL models [10, 11]. DL training’s significant dependence

on data creates I/O-bound execution, where the HPC storage
system cannot keep up with the demands of DL training on
GPUs. Researchers have leveraged these features to increase
DL training efficiency and reduce costs, introducing a range
of technologies [12] aimed at optimizing data access.

Distributed caching is a popular mechanism to optimize
data access by temporarily storing the DL dataset in near-
compute storage accelerators within HPC systems. Some
caching solutions [13, 14] use a fixed data placement and
an exclusive cache policy to store the training dataset in
near-compute storage accelerators. Other solutions [15–17]
place the sample close to its first load and then utilize a global
metadata service to locate the sample later. Additionally,
NoPFS [12] uses fixed data placement and an inclusive cache
policy to allow multiple copies of the same samples on
different nodes within the compute cluster. These solutions
reduce the training cost by increasing I/O throughput within
these HPC DL workloads by using near-compute storage
accelerators over traditional parallel file systems.

Existing caching solutions targeting the improvement of DL
training on HPC systems suffer from four specific limitations.
First, some solutions use dynamic buffer allocation to move
data between nodes, which lowers the network’s potential
throughput due to increased allocation costs. TensorFlow
Data Service [18] addresses this limitation with pre-allocated
buffers, and Horovod [19] uses statically allocated buffers.
Second, some solutions employ static and exclusive caching
policies, leading to a high percentage of off-node data transfer
calls, which diminishes the caching system’s bandwidth. This
is because DL training often requires fetching data from
remote nodes. Solutions like NoPFS (Non-Exclusive Policy
for File Systems) and adaptive caching mechanisms like
Alluxio [20] attempt to address this issue. Third, some
solutions lack coordination in data movement, resulting in
multiple I/O calls to the same dataset. Since DL datasets
might contain multiple samples per file, this increases network
congestion. Solutions like the Unified Data Access Layer
(UDAL) with coordinated prefetching address this issue [21].
Finally, some solutions fail to cache sample discovery
operations from other processes on the same node, leading to
higher metadata costs during training. Solutions like metadata



Table I: Difference in features between state-of-the-art solutions and DYAD
Features HVAC UnifyFS NoPFS DataSpaces DYAD
Remote Data Access RPC Mercury RPC with RDMA MPI Mercury RPC with RDMA Streaming RPC with RDMA
Metadata Management Uniform Hash Service with Broadcast Static Placement Distributed Metadata Hierarchical KVS
Call Aggregation None Yes (Local Service) None Yes (Local Service) Hybrid (Local FS + KVS)
Inter-Epoch Read Caching Single Copy Single Copy Static Placement Single Copy Locality-aware Caching
Optimization Goal DL-training Write-heavy DL-training Sample Sharing Write-once-read-many
Node-Local Data Access Service Service Local FS Service Local FS
Access Granularity Sample Sample Sample Sample File (enables coordination)

caching in Alluxio and the Distributed Metadata Service
(DMS) attempt to mitigate this issue. These limitations
highlight the need for locality-aware caching solutions that
can efficiently cache both data and metadata to accelerate
DL training beyond the existing solutions that are generally
tailored to target one or two of these limitations but not all.

Given these limitations, we present DYAD, a cohesive
system designed to address all four limitations by leveraging
locality-aware caching to accelerate large-scale DL workloads
on HPC systems. DYAD uses preallocated buffers with a novel
streaming Remote Procedural Call (RPC) and Remote Direct
Memory Access (RDMA) protocol, similar to how TensorFlow
Data Service and Horovod improve throughput with static
allocation strategies. DYAD employs locality-aware caching
to reduce off-node data transfers, akin to the approaches
in NoPFS and Alluxio, which ensure data is available
locally. Additionally, DYAD reduces redundant I/O calls
through data movement coordination, similar to coordinated
data prefetching and orchestration in solutions like UDAL,
thereby reducing network congestion and improving data
transfer performance. Furthermore, DYAD enhances metadata
management through its hierarchical sample discovery
mechanism with node-local metadata caching, addressing
high metadata costs. This mechanism is comparable to
Alluxio’s metadata caching and the Distributed Metadata
Service, which minimizes metadata-related overhead and
enhances training efficiency. With these features, DYAD can
accelerate DL training epochs for Unet3D [22]and Massively
Parallel Multiscale Machine-Learned Modeling Infrastructure
(MuMMI) [6, 23] up to 10.82 × compared to state-of-the-art
solutions. The main contributions of this work are:
• We introduce streaming RPC with RDMA protocol for

efficient inter-node data transfer for sharing data;
• We establish locality-aware caching to maximize DL train-

ing by maximizing node-local access and minimizing off-
node data transfers;

• We create data coordination mechanism that reduces re-
dundant data movements and improves the I/O throughput;

• We develop hierarchical sample discovery mechanism to
lookup samples efficiently by using metadata caching; and

• We accelerate large-scale DL workloads on the Corona
cluster with 512 GPUs for multi-terabyte dataset by up to
two orders of magnitude better performance.

II. BACKGROUND AND RELATED WORK

Background. We examine the unique behaviors of DL training
pipelines and their potential optimizations, highlighting the
synergy between understanding these behaviors and enhancing
training efficiency through innovative software solutions.

The efficiency of DL model training depends on the
performance of its input pipeline in reading datasets from
the file system. This input pipeline exhibits the following
five primary behaviors [7, 14, 24]. First, the input pipeline is
executed by task-driven runtime on the file system. Second,
the pipeline reads the entire dataset on each training epoch.
Third, data-parallel training shards the dataset among multiple
GPUs. Fourth, samples are randomly selected to increase the
model generalization. Finally, the AI datasets contain one or
multiple samples per file. These behaviors differentiate DL
training from traditional HPC workloads such as simulations
and high-performance data analytics.

Caching software can leverage these behaviors to optimize
the input pipeline for DL training by providing the following
five features. First, the software must efficiently provide highly
concurrent access to the dataset. Second, the software needs
to improve the cache locality of samples to progressively
enhance the input pipeline across multiple epochs. Third, the
software must avoid data staging costs by dynamically loading
the dataset as accessed. Fourth, the software must provide
high bandwidth access for random sample access. Finally, the
software must consider the dataset’s sample distribution to
reduce metadata and I/O costs on the file system. Using these
behaviors within system software is critical to maximizing
I/O throughput for large-scale DL training.
Related Work. State-of-the-art solutions enhance the input
pipeline in DL training using exclusive cache policies with
static and dynamic sample placements. A technical comparison
of these solutions reveals distinct approaches and inherent
limitations, as outlined in Table I and the following discussion.

For static placement techniques, state-of-the-art caching
solutions, such as NoPFS [12], TensorFlow Data Service [18],
and LMDBIO [25], leverage predetermined sample ordering
within DL training to determine the frequency of accesses.
This information is used to preload samples into storage
accelerators to maximize the impact of cache hits on
DL training. However, this approach requires pre-staging
samples into hierarchical storage. It also omits inter-node
communication for sample sharing, diminishing the input
pipeline’s I/O throughput during DL training. In contrast,
DYAD operates independently of sample ordering knowledge
and implements locality-aware caching of samples.

For dynamic placement techniques, state-of-the-art solutions
dynamically load data from parallel file systems and cache the
data into storage accelerators to enhance the I/O throughput
of the input pipeline. This bandwidth improvement is largely
due to the employment of faster storage devices and network
links for sharing data across multiple processes. Examples
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Figure 1: The DL training data loader uses DYAD as a cache
transparently to consume samples on local and remote DMD.

of these solutions include HVAC [13], UnifyFS [15, 26],
DeepIO [14], Quiver [27], Alluxio [20], FanStore [28], and
DataSpaces [16, 17]. However, these solutions do not fully
deploy the bandwidth potential of storage accelerators. They
rely on an exclusive cache design, which increases inter-node
communication significantly slower than node-local accesses.
DYAD addresses these issues by implementing a smartly
coordinated locality-aware caching, duplicating cache entries
to boost the rate of node-local device accesses.

III. LOCALITY-AWARE DATA MANAGEMENT FOR DL

DYAD is a locality-aware cache designed to share data effi-
ciently between I/O workers of distributed DL training. DYAD
operates on write-once-read-many (WORM) data semantics to
accelerate deep learning and High Performance Data Analytics
(HPDA) workloads in large-scale HPC systems. DYAD has
two core objectives toward the goal of a locality-aware cache
for DL training. First, DYAD leverages node-local accelerators
to enhance I/O bandwidth for deep learning training. This ef-
ficiency is achieved through effective network communication
based on streaming RPC with RDMA protocol (Section III.B),
and data movement strategies based on file-level granularity,
file-lock-based synchronization, and passive coordination
(Section III.C). Second, it performs sample discovery using
multiple node-local resources to isolate metadata operations
and improve the throughput of DL training (Section III.D).

A. DYAD Primary Components

At a high level, DYAD consists of three primary compo-
nents: (a) the DYAD Managed Directory, (b) the DYAD Li-
brary, and (c) the DYAD Service (Figure 1). The DYAD Man-
aged Directory (DMD) component manages near-computer
storage accelerators such as node-local burst buffers by pro-
viding a unified namespace for DL training to cache their
datasets. This unified global namespace allows applications
to view several DMDs across multiple nodes as a unified
distributed cache. The DYAD Library enables DL workloads’
access to the DYAD Managed Directory using data loader
defined for PyTorch and TensorFlow. For constructing the
input pipeline, DYAD defines a data loader interface for
PyTorch. This is because we cannot transparently intercept

DYAD Managed Directory (DMD)         
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Figure 2: The I/O worker uses DYAD to perform sample
discovery from either local or remote DMD seamlessly.

I/O calls from frameworks like PyTorch and NVIDIA Dali
due to the limitations associated with preloading libraries (via
LD PRELOAD) in DL training. Once the DYAD Library
is integrated into a DL application, the application can re-
trieve samples from the DYAD Managed Directory located
on either the same node or a remote one. Access to samples
on remote nodes involves communication with the respective
node’s DYAD Service. A DYAD Service is a multi-threaded
program that is deployed as a process per node to efficiently
shares samples from its Managed Directory (DMD) with other
nodes through a novel Streaming RPC with RDMA protocol.
DYAD uses a Hierarchical Sample Locator (HSL) for sample
discovery. Initially, the DYAD Library searches the local DMD
for the sample. If the sample is not local, the DYAD Library
contacts its local DYAD Service to determine its location.
Should another process on the node have previously retrieved
the sample, the local DYAD Service provides its location.
Otherwise, the DYAD Service consults the Global Sample
Locator (GSL) to identify the sample’s destination. The GSL
is a distributed metadata store hosted on every node’s DYAD
Service. This hierarchical approach to sample discovery allows
DYAD to enhance metadata scalability across the cluster.

Figure 2 shows an example of an I/O worker utilizing
DYAD to load a sample. In the figure, DL training uses a
data loader to build an input pipeline for reading the dataset.
This pipeline is managed by independent I/O workers and is
initiated by the GPU process. These workers read the data and
then supply it to the GPU process. The I/O worker requests
assistance from the DYAD Library to read a sample (Step 1).
Using the HSL, the library identifies the sample’s location
within DYAD. If the sample is available in the local DYAD
Managed Directory (DMD), it is directly delivered to the I/O
worker. Otherwise, the DYAD Library asks the remote DYAD
Service to send the sample to the local DMD (Step 2). Upon
receiving the request, the remote DYAD Service caches a
sample from the local DMD (Step 3) and transfers the sample
to the I/O worker’s memory through RDMA Put (Step 4).
Once the sample becomes accessible to the worker, it is locally
stored in the DMD for subsequent use (Step 5). A pointer to
the sample is also provided to the I/O worker for consumption.

B. Streaming RPC with RDMA Protocol

DYAD enhances network bandwidth for inter-node data
transfers, a crucial aspect of DL training where data movement
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efficiency can significantly impact overall performance. Tra-
ditional inter-node transfers [13, 29] typically rely on a two-
sided RPC protocol. However, state-of-the-art solutions such
as DataSpaces [16], HCL [30], and UnifyFS [15] demonstrate
the potential of combining RPC with RDMA protocol to speed
up inter-node data access. These solutions usually dynamically
create and register buffers for RDMA transfer. This dynamic
process, while flexible, introduces a considerable overhead that
can limit scalability to peak network bandwidth.

To address these limits, DYAD implements two key strate-
gies in its inter-node data transfer design: the use of preallo-
cated buffers and the adoption of streaming RPC. First, DYAD
uses preallocated buffers, a common practice in benchmarks
like perftest and ucx-perftest, to enhance network
bandwidth. While preallocating buffers introduces additional
memory management costs, especially for large data transfers,
DYAD addresses these with a unique, decoupled approach.
This approach combines Streaming RPC and RDMA atomic
calls for efficient management of large data transfers. Since
most DL datasets contain uniformly distributed samples [1,
22, 31–34], DYAD’s strategy ensures that it never exceeds
preallocated buffers, therefore, maximizing network bandwidth
for DL training. For cases with varying sample size distribu-
tion, DYAD’s data transfer protocol is equipped to handle data
transfer using multiple RDMA calls. Additionally, DYAD’s
preallocated buffers enable a configurable and constant mem-
ory footprint on the CPU memory for data transfers. Second,
DYAD opts for streaming RPC over the traditional two-sided
RPC to introduce a more efficient way of handling notifications
and managing the I/O worker’s memory through a lighter con-
trol plane. This streaming RPC mechanism is crucial for effi-
cient inter-node data transfers with preallocated buffers. DYAD
uses lightweight notifications to signal buffer transfers and
effectively manage data movement during network congestion.

To ensure an efficient and streamlined data transfer process
between remote services and local storage systems, DYAD’s
streaming RPC employs the RDMA protocol. This protocol

facilitates the movement of data sizes that may exceed the
sizes of predefined buffers by utilizing a ring buffer approach
for RDMA transactions.

Figure 3 provides a straightforward illustration of this
protocol’s operational flow, offering an intuitive understanding
of its functions. The DYAD Library initially preallocates and
registers a buffer for RDMA operations (Step 1). This buffer
consists of a contiguous memory block, beginning with a
96-bit header: the first 64 bits for the transfer size and the
next 32 bits for identifying the next free buffer position. At
the start, the transfer size is set to -1, and the free buffer
position is set to the last index of the buffer. Streaming RPC
is initiated at the destination DYAD Service when a sample
is read from a remote DMD. For the initial communication
between the I/O worker and the DYAD Service, an RDMA
memory pointer exchange occurs to establish a connection
for RDMA data transfers (Step 2). A pre-existing RDMA
connection is used for subsequent interactions, enhancing
data transfer efficiency throughout the application’s runtime.

Following the connection setup, the DYAD Service retrieves
the sample from its local DMD (Step 3). If the sample size is
within the limit of the preallocated buffer, it is directly trans-
ferred to the I/O worker’s memory using an RDMA Put (Step
4). However, if the sample size exceeds the buffer limit, the
protocol initially employs a control plane RDMA Put to update
the first 96 bytes of the buffer, indicating the total transfer size
and resetting the free buffer position to zero. This is followed
by the transfer of the data in 1MB chunks (Steps 4 and 5). The
I/O worker monitors the transfer progress via its local NIC,
sequentially storing the data on its local DMD and updating the
free buffer position in RDMA memory. This DYAD transfer
process ensures that the I/O worker can adequately manage the
incoming data rate, balancing the intensive remote transfers
with local buffered I/O operations. If the I/O worker falls
behind in the transfer process of the incoming data, this is
detected by the DYAD Service through an unchanged free
buffer position, prompting the service to poll the memory for
available buffer space before resuming data transfers. By doing
so, DYAD manages data transfers independently, leveraging
the efficiency of RDMA’s one-sided operations. The comple-
tion of the data transfer is signaled by the DYAD Service to the
I/O worker (Step 6), marking the conclusion of the operation.

C. Data Movement Coordination

In the training of DL models, it is common for I/O workers
to independently access samples from a dataset, employing
a technique known as embarrassing parallelism [35]. This
approach allows for multiple sample requests to be processed
simultaneously, with these requests being directed toward both
local and remote DMDs. DL models are designed to access a
unique set of samples during a single training epoch. However,
given that DL training datasets can comprise thousands of
samples per file, as noted in several studies [23, 32, 33],
this can lead to numerous I/O requests targeting the same
file concurrently. To address multiple I/O requests efficiently,
DYAD uses file-level data transfers, optimizing sample
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locality for subsequent accesses and efficiently using network
bandwidth for data transfers between nodes, particularly
since DL dataset samples typically are less than 512 KB
in size [23, 32, 34]. These characteristics of DL datasets,
combined with DYAD’s approach to inter-node file-level data
transfer, underscore the need for coordinated data movement.

DYAD uses three strategic approaches to streamline data
movement coordination for efficient deep learning (DL)
training: file-level granularity, file-lock-based synchronization,
and passive coordination. These strategies collectively enable
DYAD to manage data movement more efficiently, reducing
waiting times and optimizing the use of network and storage
resources during DL training. Adopting a file-level granularity
approach, DYAD coordinates access to complete files rather
than targeting individual samples within those files. This
strategy capitalizes on cache locality to enhance access speed
and effectively increases network bandwidth for data transfers.
Contrary to methods that delay data access until a pool of
requests is sorted and prioritized [36–39], DYAD adopts a pas-
sive coordination strategy. This strategy initiates data transfers
immediately upon the first request by an I/O worker to access
a file on the PFS, bypassing active coordination among pro-
cesses. When confronted with multiple simultaneous requests
for access to the same remote file, DYAD implements a file-
lock-based synchronization mechanism on DMD. This mech-
anism ensures that only a single process can perform the file
transfer at a time when concurrent requests occur. Subsequent
processes must wait until the transfer concludes, at which point
they can access the required sample directly from the local
DMD, thereby minimizing unnecessary data movements.

Figure 4 illustrates three instances matching the three fun-
damental movements and coordination strategies that form the
backbone of any data movement operation in DYAD. In the
figure, the term W denotes an I/O worker accessing a sample
within a file. The instance on the left (Case 1) shows a sequen-
tial I/O worker access on the same node. Two I/O workers, W1
and W2, are on the same node, accessing data in sequence. W1
goes first, pulling data from PFS into the local DMD. W2, ar-
riving afterward, bypasses the PFS, directly accessing the data
from the DMD, which now contains the file cached by W1.
This setup allows W2 to retrieve the sample immediately from

the DMS without further coordination, thanks to W1’s prior
caching, demonstrating an efficient data access strategy within
the same node. The instance in the middle (Case 2) shows a
simultaneous I/O worker access on the same node. The two I/O
workers, W1 and W2, from the same node attempt to access
data from the same file at the same time. They both try to
acquire a file lock to read from the PFS. W1 obtains the lock
first, enabling it to fetch and cache the file in the local DMD.
After completing the transfer and caching the file, W1 releases
the lock. W2, having waited for W1 to finish, then accesses the
now locally cached data directly from the DMD. This process
allows DYAD to minimize unnecessary I/O operations and data
transfers, enhancing efficiency in data access within the node.

The instance on the right (Case 3) shows a sequential I/O
worker access across different nodes. The two I/O workers,
W1 and W2, operate from different nodes. W1 is the first
to access the data, reading and caching a file in its local
DMD. It then asynchronously informs the local HSL. If W1
completes this notification before W2 starts its operation,
DYAD initiates an inter-node data transfer to replicate the
file in W2’s local DMD. As a result, W2 can directly access
the cached sample from its own DMD, leveraging remote
DMD reuse and streamlining the data access process across
nodes. These strategies are not only effective individually
for managing data within and across nodes but can also
be integrated and used in concert, enhancing each other in
various combinations. This integration is essential for DL
training operations’ scalability, performance, and flexibility.

D. Hierarchical Sample Discovery

In distributed DL training, I/O workers often locate specific
data samples across various training epochs repeatedly. This
process involves identifying the file and its offset (i.e., the
specific part where the sample is stored), locating that file, and
then reading the sample from the specified offset. Multiple I/O
workers can simultaneously look for different samples within
the same file. Moreover, the same sample can be accessed by
different workers across various training epochs.

To address these challenges, DYAD uses a multi-level
hierarchical system to efficiently find samples, which helps
prevent bottlenecks when multiple I/O workers access data
during the distributed DL training. DYAD’s HSL uses three
strategic approaches to enhance the process of finding samples.
DYAD uses Lookup Isolation to streamline the process of
locating data samples and avoid duplication of effort among
I/O workers. I/O workers prioritize local sources first, reducing
redundant searches and balancing the workload among them.
A worker starts with the local DMD for immediate access,
moves to the local HSL on the DYAD Service for intermediate
storage, and finally resorts to the global HSL for a comprehen-
sive search across nodes. The local DMD uses FS metadata
for quick searches, the local HSL serves as an efficient,
node-specific key-value store, and the global HSL distributes
the search process across nodes through its hierarchical tree
structure of the key-value stores. DYAD implements Metadata
Caching to speed up future sample access. As samples are
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accessed, their metadata is stored at various levels (local
DMD, local HSL, and global HSL), making it quicker for I/O
workers to find them next time. This caching mechanism also
has a hierarchy, with local caches serving immediate needs
and global caches providing a backup. When an I/O worker
accesses a sample, the metadata is saved in the local DMD
for quick retrieval on the same node. If the local DMD is full
and thus evicts this data, the search moves to the local HSL as
a second-level cache with longer lookup times. Failing to find
the metadata locally, the search progresses to the global HSL.
Although accessing the local HSL is one order of magnitude
slower than the DMD, it is one order of magnitude faster than
reaching out to the global HSL (Section IV-E), delivering an
optimal balance between retrieval speed and network resource
use for DYAD’s distributed environment. DYAD enhances
data retrieval speeds and resource efficiency through Lookup
Concurrency, allowing multiple I/O workers to locate samples
simultaneously, thus optimizing concurrent access for better
throughput. The I/O workers follow the established sequence
of Lookup Isolation, starting with the local DMD, then the
local HSL, and finally, the global HSL. Such a structured
approach to parallelism ensures that workers achieve a higher
discovery rate of samples, especially from local sources such
as DMD, compared to more extensive network searches like
those required for the global HSL.

Figure 5 illustrates four distinct use cases for hierarchical
sample discovery within DL training using DYAD. In each use
case, two workers access samples from the same file but en-
counter different caching situations. In the figure, “W” denotes
the I/O worker accessing a sample within a file. In Case 1,
W1 and W2 are on the same node accessing the same sample,
with W2 finding it in the local DMD because W1 had already
cached it there. In Case 2,, similarly to Case 1, W1 and W2 are
on the same node. However, the sample initially cached and
accessed by W1 has been removed before W2’s search begins.
Consequently, W2’s attempt to locate the sample using the
local DMD fails, leading W2 to successfully find the sample
in the local HSL. In Case 3, W1 and W2 are on different nodes.
W1 had already cached the samples locally, and thus W2 finds
it in the global HSL due to a miss in its local caches. In this
case, the global HSL is a tree, and, in the worst case, the file
with the sample can be the root node of HSL hierarchical
structures. Finally, in Case 4, W1 reads a sample not yet

cached in DYAD. In this case, the DYAD’s HSL lookups fail,
and the file is located directly on the parallel file system. These
cases illustrate DYAD’s hierarchical sample discovery process
supports diverse and efficient data access in DL training envi-
ronments. By caching sample discovery operations at various
levels, DYAD maximizes metadata throughput across a cluster.

E. Implementation Details

The DYAD software [40] comprises core library, DYAD
APIs, DYAD wrappers, and the DYAD Service. The core
library, written in C, provides essential external interfaces
to facilitate the development of various use cases. Internally,
the core library uses the POSIX interface for data transfer
to and from the DYAD Managed Directory (DMD). The
DYAD wrappers ensure productivity and portability. They
are developed in multiple languages: POSIX and STDIO
wrappers in C, file stream wrappers in C++, and wrappers for
PyTorch Data Loader, Numpy array, and h5py in Python. The
DYAD Service, integrated as a module within the Flux Broker
manages Streaming RPC interactions with I/O workers, hosts
the Hierarchical Sample Locator, and performs cache eviction.
DYAD adopts Streaming RPC through Flux Streaming RPC
and RDMA calls via Unified Communication X (UCX), lever-
aging page-aligned memory, atomic, and one-sided operations.
Within DYAD, UCX infrastructure initialization performs a
warmup message using a loopback address to minimize net-
work jitter. The Hierarchical Sample Locator in the DYAD
Service employs the Flux Key-Value Store (KVS) [41], meet-
ing two essential criteria. First, the Flux KVS locally caches
lookup operations, facilitating isolation in metadata discovery.
Second, its hierarchical structure enables controlled isolation
of remote metadata calls for different workloads. Our experi-
ments utilize a flat topology within the Flux KVS.

IV. EVALUATION

We assess the scalability and performance of the DYAD
by examining its key technologies, including Streaming RPC
with RDMA, data movement coordination, and Hierarchical
Sample Locator. We also evaluate DYAD’s ability to optimize
DL training and its performance compared to leading
solutions like DataSpaces and UnifyFS.

A. Methodology

Hardware. We run our experiments on the Corona cluster,
comprising 121 nodes with a 48-core AMD Rome processor,
256GB of memory, 1.5 TB NVMe SSD, and eight AMD MI50
GPUs each. We weak scale the DL workloads to 64 nodes.
Software. We run the DL workloads using Python 3.9.12,
OpenMPI 4.1.2, and UCX 1.15.0. The Python packages
included Torch 2.2.1, h5py 3.10.0, and Numpy 1.26.0. This
software setup enables multi-processing and distributed
training with MPI, alongside UCX communication for the
PyTorch workload. To trace Python functions and I/O calls,
we utilized DFTracer version 1.0.2.
Workloads. We use micro-benchmarks and DL workloads in
PyTorch, including UNet3D [22] (available on GitHub [42])
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Figure 6: The Streaming RPC with RDMA protocol is bound
by the I/O at small-scale and by the network at large-scale.

and MuMMI DL Training [6, 23], to evaluate DYAD’s per-
formance. DYAD was integrated with these workloads using
the PyTorch data loader interface [43]. We measure metrics
such as data transfer bandwidth, throughput, and execution
time across tests, with results replicated ten times to assess
variability. We compare DYAD with Lustre [44], UnifyFS [15],
and DataSpaces [16, 17] on HPC cluster. These solutions
are architecturally closest to DYAD and utilize state-of-the-art
network protocols to share data efficiently within HPC work-
loads. We acknowledge that these solutions were not originally
designed for DL workloads. However, as seen in our results,
UnifyFS optimizes DL workloads by 3×. DYAD outperforms
UnifyFS and DataSpaces due to improved data locality and
metadata optimizations performed for DL workloads. DataS-
paces is tested with 16 processes per node as it has scalability
issues beyond that for 64 nodes. For Dyad, UnifyFS, and
DataSpaces, we allocate one core for the Server for internal
tests and we use optimal Server parameters to run real-world
AI workloads. Attempts to use HVAC and NoPFS are hindered
by compatibility issues with our AI workloads. Additionally,
deploying BeeGFS and Alluxio on our Corona cluster required
superuser privileges, which are unavailable for users.

B. Scalability of inter-node sample access

To measure the efficiency of our Streaming RPC with
RDMA protocol for inter-node data movement, we conduct
tests varying from 2 to 64 nodes to assess the scalability of
data transfers. These tests ranged from using a single process
per node up to 32 processes per node and selecting the best
configuration from the two-node setup to apply to multi-node
scenarios. Each process performs sixteen 1 MB transfers
between nodes to measure bandwidth. Figure 6 shows the
scalability of our protocol; the x-axis indicates the scale of the
test, and the y-axis indicates bandwidth in GB/s. We examine
our protocol’s network bandwidth under two conditions: with
I/O operations (DYAD with I/O) and without I/O operations
(DYAD without I/O). DYAD with I/O mirrors the total band-
width for sample movement, while DYAD without I/O focuses
exclusively on the network’s performance in sample transfer.

In Figures 6(a) (two-node test), we observe that the peak
bandwidth for ucx-perftest reaches 2.5 GB/s with 32 pro-
cesses. UnifyFS approaches the network limit but experiences

significant overhead with lower process counts (4.2× slower
with four processes) compared to ucx-perftest due to
dynamic buffer allocation, which impacts performance. DataS-
paces is between 1.6 and 9.5× slower than ucx-perftest,
as it creates dynamic connections and allocates buffers, low-
ering its data transfer speed. For DYAD with I/O, bandwidth
peaks at 1.9 GB/s, matching the maximum performance of a
single process on node-local NVMe for 1 MB requests. DYAD
without I/O achieves similar scalability to ucx-perftest,
reaching a peak bandwidth of 2.3 GB/s. The higher bandwidth
with DYAD without I/O is due to using Streaming RPC
for initiating transfers, followed by RDMA Put operations
for data movement. Adding memory allocation operations
reduces the bandwidth by up to 8×; therefore, within DYAD,
we preallocate the buffers and maximize network bandwidth.

In Figure 6(b) (multi-node test), we observed that the
bandwidth for ucx-perftest scales with the number of
nodes due to the UCX capacity for moving larger volumes
of data across the network as the number of nodes increases.
Both UnifyFS and DataSpaces demonstrate nearly linear
scaling with the number of nodes. However, they also exhibit
performance overheads due to memory allocation and the es-
tablishment of dynamic connections, resulting in UnifyFS and
DataSpaces being up to 2.5× and 3.6× slower, respectively,
than ucx-perftest. Unlike in the two-node test, both
configurations of DYAD (with and without I/O) closely match
the scaling performance of ucx-perftest because the
aggregate bandwidth of node-local storage increases linearly
with the number of nodes. Using a round-robin approach,
the inter-node data transfer protocol of DYAD reaches up to
135 GB/s in bandwidth for data transfers across 64 nodes.
Performance at the small scale is limited by the I/O bandwidth
of node-local storage, whereas at the large scale, the limiting
factor shifts to network bandwidth, which scales sub-linearly
compared to the linear scalability of node-local storage.
Findings 1: The scalability Streaming RPC with RDMA
protocol is I/O-bound at smaller scales and network-bound
at larger scales.

C. Scalability of node-local sample access

To measure the scalability of node-local accesses, we
conducted tests ranging from a single node to 64 nodes. In
the case of a single node, the tests varied from one to 64
processes per node. For the multi-node tests, we scale the
number of nodes from the best scenario identified in the
single-node tests. Each process made 16 requests, each 1 MB
in size, to assess the bandwidth. Figure 7 shows the results
of the single-node and multi-node tests, with the x-axis
indicating the scale of the test and the y-axis indicating the
bandwidth in GB/s. We include a baseline performance of our
NVMe device for comparison against Process Local Access
(when a process reads a sample that it previously accessed in
the last epoch) and Node Local Access (when a process reads
a sample that another process on the same node accessed).

In Figure 7(a) (one-node test), we observe that the peak
bandwidth for node-local NVMe with OS caching is 25 GB/s
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Figure 7: DYAD’s lightweight node-local HSL enables close-
to-device bandwidth for accessing samples during DL training.

for 64 processes. We do not scale beyond 64 processes as
the maximum number of cores available on the node is 48.
Process local accesses for UnifyFS closely follow the trend
of NVMe up to 8 processes per node. After that, the cost of
bookkeeping for appending to the log-structured storage [15]
reduces its overall bandwidth by 40% for 64 processes per
node. For DataSpaces, all accesses go through the mercury
infrastructure [17], making it 6.9× slower than NVMe. For
DYAD, both Process Local Access and Node Local Access
closely follow the trends of the NVMe device as the sample
discovery is done using local-DMD with a peak bandwidth of
23 GB/s. This demonstrates that DYAD has minimal overhead
for node-local sample accesses.

The multi-node test in Figure 7(b) also exhibits similar
trends to that of the one-node test. The exclusive nature of
node-local NVMe, the bandwidth linearly scales up with
the number of nodes with a bandwidth of 2.2 TB/s for 64
nodes. This bandwidth includes the OS caching effect, which
is a realistic case for most node-local accesses on modern
supercomputers with large memories larger than 256 GB.
UnifyFS and DataSpaces are 2.5× and 50.1× slower than
NVMe accesses. Similar to the two-node test, DYAD’s Process
Local Access and Node Local Access closely follow NVMe’s
bandwidth trend, with 2.0 TB/s bandwidth for 64 nodes.
Findings 2: The locality-aware caching mechanism of DYAD
facilitates nearly device-level bandwidth performance for
node-local sample access, enabling it to scale efficiently to a
bandwidth of 2.0 TB/s across multiple nodes.

D. Impact of data movement coordination

To evaluate the impact of data movement coordination on
inter-node access, we conducted scaling tests similar to those
described in Section IV-B, executing 16 requests of 1 MB
each across a range from two to 64 nodes. Each node reads
a distinct sample from the same file. Figures 8(a) and 8(b)
present the results for the two-node and multi-node tests,
respectively. The x-axis indicates the scale of the test, while
the y-axis indicates the bandwidth in GB/s. Having previously
compared our protocol’s bandwidth with ucx-perftest,
we now focus on comparing our protocol with and without
aggregation implementation (Section III-C). UnifyFS was
excluded from this test as it does not support aggregation.
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Figure 8: Coordination accesses for samples on the same file
can improve network bandwidth by up to a 3-fold increase.
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Figure 9: Isolating accesses through HSL improves sample
discovery throughput by up to a 272× increase.

In the two-node test depicted in Figure 8(a), DataSpaces
sees a performance improvement of 5% when sending du-
plicate requests, benefiting mainly from aggregating sample
lookup costs. For DYAD, both metadata and data aggregation
occur. We note that the scalability with aggregation approaches
linearity, attributed to a single process undertaking the data
transfer while others access the sample from local DMD, as
detailed in Section III-C. This adjustment boosts our inter-node
bandwidth in the test scenario to 23 GB/s with aggregation
compared to 2.1 GB/s without aggregation. The two-node test
results, shown in Figure 8(b), demonstrate a similar trend. With
aggregation, the test’s perceived bandwidth increases to 380
GB/s, versus 128 GB/s without aggregation.
Findings 3: Coordinating access to multiple samples within
the same file significantly enhances the perceived inter-node
bandwidth of the workload, achieving a 2.9× increase..

E. Impact of hierarchical sample discovery

To evaluate the impact of hierarchical sample discovery,
we conduct sample discovery tasks wherein each application
process initiates 16 file lookups distributed across a scale
from one to 64 nodes, each running 64 processes. This test
involves storing the metadata for files across various levels of
the Hierarchical Sample Locator (HSL) for DYAD’s local Dis-
tributed Local Directory Manager (DLDM) managed directory,
local HSL, and global HSL, in comparison to DataSpaces’
local, server, and remote discovery mechanisms. The aim is
to exclusively utilize the desired HSL level for DYAD. The
scalability and performance metrics of each HSL level are
calculated and analyzed. Figure 9 displays the results of the
hierarchical sample discovery test, where the x-axis represents
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Figure 10: DYAD improves the epoch time of Unet3D by up to 10.82× due to locality-aware caching as compared to UnifyFS.

the scale of the test and the y-axis shows the throughput
measured in operations per second. Our solution is only
compared with DataSpaces, as it is not feasible to separately
measure the metadata-related costs within UnifyFS.

For the local DMD test illustrated in Figure 9, we observe
that DYAD’s throughput of operations scales linearly with the
number of nodes. Since lookup operations are isolated within
each node, access scales efficiently by adding multiple nodes.
Consequently, the throughput of HSL via local DMD reaches
90 million operations per second. This performance of local
DMD is primarily dictated by the cost of file system metadata
access on node-local NVMe storage. DataSpaces, in contrast,
contacts its node-local server to locate the sample, rendering
DYAD 3.5K× faster than DataSpaces. Transitioning from
local DMD to local HSL, as shown in Figure 9, we notice that
DYAD’s throughput of operations maintains linear scalability
across multiple nodes. The lookup costs remain isolated to
each node, facilitated by the interaction between the locator
process and the local DYAD HSL. Thus, the throughput of
HSL through the local DYAD Service reaches approximately
8 M ops/sec. Local DYAD Service’s HSL performance is
limited by inter-process communication within the Flux KVS
for node-local accesses, occurring exclusively when the DMD
cache is evicted. For DataSpaces, all node-local discoveries
are executed using their node-local Service. In this scenario
where DYAD has a sample in DMD, our solution is 3,400×
faster than DataSpaces. In contrast, when DYAD has evicted
its sample from DMD, it is 308× faster than DataSpaces.
Last, in the global HSL test depicted in Figure 9, we observe
that DYAD’s operations throughput similarly scales linearly
across multiple nodes. In this scenario, the lookup cost is
external to the node and is thus bound by the network latency
within the cluster. Specifically, the throughput for remote
sample discovery using global HSL is 330K ops/sec. Global
access within DataSpaces involves a broadcast operation
across all servers to locate data. This process yields DYAD’s
global HSL between 10 to 55× faster than DataSpaces.
Findings 4: HSL empowers DYAD to isolate sample discovery,
leading to 55× higher in performance.

F. Real DL Training workloads

We compare DYAD with UnifyFS and DataSpaces in
large-scale DL training workloads, Unet3D and MuMMI.

For Unet3D, DYAD and UnifyFS are evaluated in a scenario
ideal for UnifyFS, involving rapid metadata lookup and data
transfer with a single sample per file. For MuMMI, DYAD
is compared with DataSpaces, suited for efficiently accessing
samples from large files. DYAD loads the dataset directly
from the PFS in the first epoch and caches it in a distributed
cache. In contrast, UnifyFS and DataSpaces stage the dataset
into their services before starting DL training. The dataset
used in DL training is based on the actual dataset used by
scientists in their DL workload.

1) Unet3D: is a network for volumetric segmentation in
medical imaging, using a 20-layer deep convolutional network
to learn from 10,240 sparsely annotated images ( 140 MB
each, totaling 1.36 TB in NPZ format) [45]. Utilizing PyTorch
for data parallel training, the model processes batches of
four images across six threads per GPU over twenty epochs
without checkpointing, scaling from 8 to 64 nodes with eight
GPUs each. We analyze performance metrics like runtime
and bandwidth per epoch for Luster, UnifyFS, and DYAD as
well as the per-epoch distribution of remote vs. local calls
for DYAD only using the DFTracer [46].

Figure 10(a) demonstrates DYAD’s runtime improvement
for Unet3D, showing a significant performance boost over
Lustre and UnifyFS, mainly due to data locality optimizations.
DYAD achieves up to 7.5× faster processing than Lustre and
1.88× than UnifyFS, with less performance variability due to
its use of node-local storage. Figure 10(b) details bandwidth
per epoch performance across 512 GPUs, highlighting
DYAD’s progressive bandwidth increase—starting at Lustre
levels, then soaring to 140GB/s with Streaming RPC with
RDMA, and finally reaching 1.3 TB/s as locality-aware
caching makes 70% of calls local. The transition beyond
the eighth epoch shows computation costs becoming the
dominant factor in training time with DYAD. Unlike UnifyFS,
Dyad significantly speeds up the training time by 10.62×
for the 20th epoch. As the process progresses and more data
becomes cached locally, a stable bandwidth of approximately
1.3 TB/s for subsequent epochs indicates efficient data access
and utilization. Figure 10(c) illustrates how local versus
remote calls per epoch impact the bandwidth achieved for
each epoch in the context of 512 GPUs. Epochs 10 and 11
decrease performance due to remote calls in some batches,
which lowers the overall bandwidth.
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Figure 11: DYAD’s caches the entire dataset during the first epoch and optimizes I/O for future several hundred epochs.

Findings 5: DYAD significantly improves the performance
and efficiency of Unet3D’s data processing for medical
image segmentation by optimizing data locality compared to
conventional caching solutions.

2) MuMMI: The Massively Parallel Multiscale Machine-
Learned Modeling Infrastructure (MuMMI) is a framework
designed for executing multiscale modeling simulations
of large molecular systems, integrated through ML
techniques [6]. Our workload, developed in PyTorch, employs
a map-style data loader for HDF5 datasets, comprising 600
files with 8k samples and 8,691 elements of size 8 bytes. We
adopt the DLIO Benchmark to execute this workload over ten
epochs, achieving a simulated computation time of 133 ms.
The workload scales up to 64 nodes. We analyze runtime and
bandwidth per epoch for Luster, DataSpaces, and DYAD and
the per-epoch distribution of remote vs. local calls for DYAD.

Figure 11(a) presents the end-to-end scaling runtime where
the Lustre file system significantly reduces the overall runtime
from 26 to 12 seconds when scaling from 8 to 64 nodes.
This figure also demonstrates that DataSpaces’ performance
is adversely affected compared to Lustre’s. The per-epoch
bandwidth is detailed in Figure 6(b), indicating DataSpaces’
limited performance due to an inter-node data transfer rate of
only 11 GB/s for 64 nodes. Moreover, the fact that the dataset
dimensions are not a power of 2 negatively impacts metadata
scalability in DataSpaces because of the uniform hashing
algorithm. This, along with the bandwidth limitation, renders
DataSpaces 3.8 to 4.1× slower than Lustre. Furthermore,
DataSpaces struggles to efficiently cache samples for eight
nodes, leading to a segmentation fault at the eighth epoch,
despite the aggregate memory being 4× the dataset. On the
other hand, DYAD is showcased to be 1.8 to 2.4× faster
than Lustre, with its peak per-epoch bandwidth reaching 29
GB/s for the MuMMI dataset, as illustrated in Figures 11(b)
and 6(b). Despite a significant I/O bandwidth of 1,762 GB/s
on average after the first epoch, the predominantly computa-
tional nature of the MuMMI workload means these bandwidth
improvements do not translate into substantial performance
benefits. However, the availability of most data locally after
the first epoch significantly boosts DYAD’s performance, a
phenomenon highlighted in Figure11(c).
Findings 6: The DYAD data management system boosts
MuMMI’s modeling efficiency by outperforming Lustre and

DataSpaces, notably by quicker caching of smaller file
workloads in the node-local DMD.

V. CONCLUSIONS

DL training involves processing large datasets over many
epochs on HPC systems, creating opportunities for speed
improvements through strategic data caching. Our solution,
DYAD, introduces a locality-aware cache for DL datasets over
near-compute storage accelerators. DYAD replaces dynamic
memory allocations for data transfer between nodes with a
more efficient streaming RPC with RDMA protocol with
pre-allocated buffers, thus maximizing network bandwidth.
DYAD adopts locality-aware caching with sample redundancy
to address the inefficiency of traditional caching methods due
to DL’s per-epoch full dataset read. DYAD orchestrates data
movement to avoid redundant I/O operations and network con-
gestion, boosting sample reading throughput by 8.78x. Last,
DYAD uses a hierarchical metadata management approach to
drastically reduce lookup times by two orders of magnitude
faster discovery. We demonstrate that DYAD enhances training
speeds for Unet3D and MuMMI models by up to 10.82×
compared with state-of-the-art solutions on a 512 GPU Corona
cluster. In the future, we will enhance our current design with
the capability to move partial samples within the distributed
cache. This would require finer metadata management and
further reduce data redundancy for communication.
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[12] N. Dryden, R. Böhringer, T. Ben-Nun, and T. Hoefler,
“Clairvoyant prefetching for distributed machine learning
I/O,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, ser. SC ’21. New York, NY, USA: Association
for Computing Machinery, Nov. 2021, pp. 1–15. [Online].

Available: https://dl.acm.org/doi/10.1145/3458817.3476181
[13] A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash,

S. Atchley, and F. Wang, “Hvac: Removing I/O Bottleneck
for Large-Scale Deep Learning Applications,” in 2022 IEEE
International Conference on Cluster Computing (CLUSTER),
Sep. 2022, pp. 324–335, iSSN: 2168-9253. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9912705

[14] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror,
K. Sato, and W. Yu, “Entropy-Aware I/O Pipelining for Large-
Scale Deep Learning on HPC Systems,” in 2018 IEEE 26th
International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), Sep.
2018, pp. 145–156, iSSN: 2375-0227. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8526881

[15] M. J. Brim, A. T. Moody, S.-H. Lim, R. Miller, S. Boehm,
C. Stanavige, K. M. Mohror, and S. Oral, “UnifyFS: A User-
level Shared File System for Unified Access to Distributed
Local Storage,” in 2023 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), May 2023, pp. 290–
300, iSSN: 1530-2075.

[16] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: an
interaction and coordination framework for coupled simulation
workflows,” in Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing,
ser. HPDC ’10. New York, NY, USA: Association for
Computing Machinery, Jun. 2010, pp. 25–36. [Online].
Available: https://doi.org/10.1145/1851476.1851481

[17] S. Klasky, M. Wolf, M. Ainsworth, C. Atkins, J. Choi,
G. Eisenhauer, B. Geveci, W. Godoy, M. Kim, J. Kress,
T. Kurc, Q. Liu, J. Logan, A. B. Maccabe, K. Mehta,
G. Ostrouchov, M. Parashar, N. Podhorszki, D. Pugmire,
E. Suchyta, L. Wan, and R. Wang, “A View from ORNL:
Scientific Data Research Opportunities in the Big Data
Age,” in 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), Jul. 2018, pp.
1357–1368, iSSN: 2575-8411. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/8416399

[18] A. Audibert, Y. Chen, D. Graur, A. Klimovic, J. Šimša, and
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