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ABSTRACT
Traces of MPI communications are used by many performance anal-
ysis and visualization tools. Storing exhaustive traces of large scale
MPI applications is infeasible, due to their large volume. Aggregated
or lossy MPI traces are smaller, but provide much less information.
In this paper, we present Pilgrim, a near lossless MPI tracing tool
that incurs moderate overheads and generates small trace files at
large scales, by using sophisticated compression techniques. Fur-
thermore, for codes with regular communication patterns, Pilgrim
can store their traces in constant space regardless of the problem
size, the number of processors, and the number of iterations. In
comparison with existing tools, Pilgrim preserves more information
with less space in all the programs we tested.

CCS CONCEPTS
•Theory of computation→Data compression;Patternmatch-
ing; •Computingmethodologies→Massively parallel algorithms.
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1 INTRODUCTION
Traces of MPI communication calls in a parallel execution are es-
sential to many HPC tools. They are used for performance analysis
and communication visualization by tools such as Vampir [17] and
Scalasca [11], for identifying errors in MPI codes [12], for guiding
source code transformation [24], etc. Traces are also used to replay
application communications, in order to study communication sys-
tems and guide the design of future machines [14, 30]. One can also
use them to build performance prediction skeletons for estimating
the performance of large applications [27, 28].

However, as systems become larger, trace sizes can get prohibi-
tively large for applications running at large scales. For example,
uncompressed traces of NAS parallel benchmarks [4] running on
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less than 1,000 processors can reach a few gigabytes [23]. To address
this, some forms of compression are used by most trace collection
tools [11, 18, 19, 23, 25, 37].We shall mostly compare to Cypress [37]
and ScalaTrace [35] as they are state-of-the-art tools that are closest
to our work.

The compression schemes used by these systems are lossy (even
when labeled as lossless). Information is lost at two places: First,
numeric performance information, such as call duration, is often
aggregated and summarized into a few statistics on-the-fly by pro-
filing tools like AutoPerf [8], mpiP [31] and IPM [26]. These tools
are extremely useful for discovering the characteristics across ap-
plications as they can be deployed system-widely thanks to the low
overhead. The drawback is that they keep only limited information
for each application, which is not enough when a more detailed
analysis is required. With tracing, the overhead is normally higher,
but once the communication traces have been generated, they can
be used repeatedly in various post-processing tasks and analyses.

Second, basically no tracing system collects all the information
available when MPI calls are intercepted. They ignore some MPI
functions and some of the parameters of the traced functions. This
improves the compression rate but reduces the usefulness of the
traces. Consider the following code:

// requests: MPI_Request array of length incount
// incount: assume is the same for all processes
do {

...
MPI_Testsome(incount, requests, outcount,

indices, statuses);
...

} while(!(all requests were finished));

This is not an uncommon patternwhere each process loops over a
list of requests and handles each completed request. If we keep only
the first parameter (incount) of this call, then eachMPI call on each
process will generate an identical trace record and the records will
compress well. However, the code is non-deterministic as messages
may be received in a different order at each process and at each
iteration of this code. In order to know the actual execution order,
one needs to handle the remaining arguments and preserve enough
information in the compressed trace so that each non-blocking
communication can be matched with the test call that completed
it. Neither ScalaTrace nor Cypress records MPI_Testxxx calls, so
the traces they record cannot be used to replay communications in
proper order in this example.
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Functions
Supported Cypress ScalaTrace Pilgrim

Total: 446 56 125 446

Popular
Parameters Cypress ScalaTrace Pilgrim

MPI_Status ✓ ✓ ✓
MPI_Request × ✓ ✓
MPI_Comm intra intra and inter intra and inter
MPI_Datatype only the size ✓ ✓
src/dst/tag ✓ ✓ ✓
memory pointer × × ✓

Table 1: Comparison of information collected by different
tracing tools. The total MPI (C) function count is based on
MPI 4.0 RC [3] (excluding MPI_Wtime and MPI_Wtick).

We present in this paper the Pilgrim1 trace collection and com-
pression tool that we have developed in order to preserve as com-
plete information as possible on executedMPI calls, while achieving
good compression. The paper makes the following contributions:

(1) Pilgrim records all MPI functions and all their parameters. The
wrappers and the interception code are generated automati-
cally from the MPI standard to ensure completeness. Table 1
compares the information collected by Pilgrim, Cypress and
ScalaTrace. The information about Cypress and ScalaTrace were
retrieved by manually examining their source code, so small
inaccuracies may exist.

(2) All MPI objects (e.g., MPI_Request, MPI_Comm, etc) and memory
buffers are encoded in a way that preserves the original infor-
mation. Pilgrim also intercepts memory allocation operations
to match pointers used in MPI calls.

(3) We address the corner cases that are normally ignored by ex-
isting work, e.g., non-blocking communicator creation, inter-
communicators, MPI_Testxxx calls, etc.

(4) We incrementally construct a context-free-grammar and a call
signature table for each process to store all information. Opti-
mizations including relative rank encoding and loop detection
are proposed to further improve the compression ratio.

(5) We demonstrate the scalability and effectiveness of Pilgrim
using a variety of codes.We show that while we preserve more
information, we also achieve a smaller trace size.

(6) Pilgrim does not require access to the application source code
or linking to a special library.

The rest of the paper is organized as follows: Section 2 provides
an overview of Pilgrim’s design. Section 3 describes the imple-
mentation details, along with the proposed optimizations. Next, in
Section 4, we evaluate Pilgrim and compare the results with Scala-
Trace. The related work is given in Section 5. Finally, we conclude
in Section 6.

1Pilgrim is publicly available at https://github.com/pmodels/pilgrim

2 OVERVIEW
Lossless MPI tracing is challenging in that it needs to store a huge
amount of information with an acceptable overhead. The overhead
consists of two parts: (1) Space overhead which includes memory
footprint during runtime and the disk space required for storing
the traces after the application run. (2) Time overhead due to the
tracing and compression procedure.

Compression can occur at two points in time: online compression
that is performed as traces are collected, and offline compression
that occurs after all traces were collected. The “offline” compression
can be executed in parallel when MPI is finalized, thus reducing I/O.
Online compression usually is intra-process, compressing the trace
file generated for one process, while offline compression usually is
inter-process, combining the trace files of distinct processes.

The longer an application runs or the more nodes it runs on,
the more MPI calls it will make (Figure 6). Fortunately, most codes
exhibit recurring communication patterns to some extent. Good
trace compression can be achieved, if we recognize and compress
as many recurring patterns as possible. We achieve this by repre-
senting the traces using a context-free-grammar (CFG) and a call
signature table (CST) as the storage format. Next, we will describe
the CFG and CST and then show how to use them to represent MPI
calls and how to build them incrementally.

2.1 CFG and CST
A formal grammar is defined by a set of production (or term rewrit-
ing) rules that describe all possible strings in a given formal lan-
guage – namely all strings of terminal symbols that can be obtained
by repeatedly applying production rules of the grammar, starting
from the initial non-terminal symbol 𝑆 . A context-free grammar
(CFG) is a formal grammar whose production rules are of the form
𝐴 → 𝛼 , where 𝐴 is a single non-terminal symbol and 𝛼 is a string
of terminal and/or non-terminal symbols. The grammar generates
a unique string if there is exactly one rewriting rule for each non-
terminal and the grammar is acyclic. (A grammar is cyclic if there
is a sequence of derivations so that 𝐴 → . . . → 𝛼𝐴𝛽 , for some
non-terminal 𝐴; it is acyclic otherwise.)

A string can be represented by a CFG that uniquely generates
that string. If the string has repeating patterns, the grammar can
be much shorter than the string. For example, a string 𝑎𝑛 , where
𝑛 = 2𝑘 , can be represented by a grammar with 𝑘 + 1 production
rules: 𝑆 → 𝐴1𝐴1, 𝐴1 → 𝐴2𝐴2, . . ., 𝐴𝑘 → 𝑎. In the best case,
a CFG can represent a string of 𝑁 characters in 𝑂 (𝑙𝑜𝑔𝑁 ) space,
whereas in the worst case (e.g., a random string) it requires 𝑂 (𝑁 )
space. Conceptually speaking, building the CFG is the process of
compressing the string and repeated rule application is the process
of decompressing the string.

Pilgrim builds online one CFG for each process to compress
and store the sequence of MPI calls made by that process. This
sequence can be considered as a string of terminal symbols, where
each terminal represents a unique MPI call and the values of its
input or output parameters. In order to efficiently map from a call
to a terminal symbol, Pilgrim maintains a call signature table (CST)
on each process. A call signature is composed of a function id (every
MPI function has a unique id) and the values of its parameters.
Parameters that are handles to opaque MPI objects are encoded

https://github.com/pmodels/pilgrim
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MPI_Comm_size(comm, &size);
MPI_Comm_rank(comm, &rank);
if (rank == 0) {
    MPI_Comm_set_name(comm, "my-comm");
    for (int i = 0; i < 10; i++)
        MPI_Send(buf, 1, MPI_INT, 1, 999, comm);
}
if (rank == 1) {
    for (int i = 0; i < 10; i++)
        MPI_Recv(buf, 1, MPI_INT, 0, 999, comm);
}

S → 1 → 2 → 3 → A
A → 410

S → 1 → 2 → A
A → 310

TerminalCall Signature

MPI_Comm_size(comm, 2);

MPI_Comm_rank(comm, 0);

MPI_Comm_set_name(comm,
"my-comm");

MPI_Send(buf, 1, MPI_INT, 1,
999, comm);

1

2

3

4

TerminalCall Signature

MPI_Comm_size(comm, 2);

MPI_Comm_rank(comm, 1);

MPI_Recv(buf, 1, MPI_INT, 0,
999, comm);

1

2

3

CFG of Rank 0

CFG of Rank 1

CST of Rank 0 CST of Rank 1

Figure 1: CFG andCST example of a simple code snippet run-
ning with two MPI ranks

symbolically (the encoding is described later). Figure 1 shows a
simple code snippet and the produced CFG and CST when running
with two MPI ranks.

The CFG and CST together enable efficient intra-process com-
pression. And since both of them are maintained independently
for each process, there is no message exchange or communication
overhead until the inter-process compression, except for calls cre-
ating new communicators and similar global objects.. Locally, they
guarantee that duplicated calls by the same process will be stored
only once and the recurring patterns will be compressed by gram-
mar rules. Globally, calls and grammar rules across processes will
be merged during the inter-process compression, which will be
discussed in Section 3.5.

2.2 Optimized Sequitur Algorithm
Both the CFG and CST are built on-the-fly. Every time Pilgrim
encounters an MPI call, it first consults the CST to find the terminal
symbol or create a new entry if it is its first occurrence. Next, the
current grammar is modified in order to handle the new terminal
symbol.

The algorithm we used to build the CFG is the well-known
Sequitur [22] algorithm. It is a good fit for Pilgrim for two reasons:
(1) It is an incremental algorithm that can grow the CFG at runtime,
i.e., one MPI call at a time. (2) It has a linear time complexity in
terms of the number of symbols, which is important because the
number of MPI calls tends to be large.

The grammar generated by the Sequitur algorithm has two prop-
erties:

• P1: No pair of adjacent symbols appears more than once in
the grammar.

• P2: Every non-terminal appears more than once on the right-
hand side of a production.

The algorithm operates by enforcing the two constraints on the
grammar: when property P1 is violated, a new production is formed.
Thus, a rule𝐴 → 𝑏𝑐𝐵𝑏𝑐 will be replaced by𝐴 → 𝑋𝐵𝑋 and𝑋 → 𝑏𝑐 .
When property P2 is violated, the useless production is deleted.

Thus, if we have productions 𝐴 → 𝐵𝑐 , 𝐵 → 𝑎𝑏, and 𝐵 appears
in no other production, then the first production is replaced by
𝐴 → 𝑎𝑏𝑐 and the second one is deleted. With these two constraints,
a loop of𝑁 identical iterations will be compressed to a𝑂 (𝑙𝑜𝑔𝑁 ) size
grammar. A more compact grammar is obtained by adding to the
notation repetition counts, i.e. productions of the form𝐴 → 𝐵𝑘 , and
replacing each production of the form𝐴 → 𝐵𝑖𝐵 𝑗 by the production
𝐴 → 𝐵𝑖+𝑗 [9]. This optimization reduces space complexity for
regular loops from 𝑂 (𝑙𝑜𝑔𝑁 ) to 𝑂 (1). (Strictly speaking, we replace
a logarithmic number of productions by counters with a logarithmic
number of bits – we replace recursion with iteration.)

Pilgrim uses this optimized version of the Sequitur algorithm to
build each local CFG. We do not describe the implementation of
the Sequitur algorithm and refer readers to [9, 22] for details.

3 IMPLEMENTATION
Figure 2 depicts the whole tracing and compression process, which
has the following steps: (1) Intercept each MPI call; (2) Store the
timing information; (3) Encode parameters and compose the call
signature; (4) Update the CST; (4) Use Sequitur algorithm to grow
the CFG; and, finally, (6) Inter-process compression.

App

Rank 0

2. Storing timing
infomration

4. Update CST 5. Grow CFG

3. Encode function
parameter

Intra-process
tracing and compression

CFG 0
CST 0

CFG 1
CST 1

CFG N-1
CST N-1

CST

CFG

6. Inter-process
Compression

1. Intercept
MPI Call

Rank 1 1. Intercept
MPI Call

Rank N-1

... ...

1. Intercept
MPI Call

Figure 2: Tracing and compression process of Pilgrim

The intra-process compression, which is done separately for each
process, consists of steps (2-5). Steps (4) and (5) have already been
discussed in the previous section. In this section, we will describe
the remaining steps in detail.

3.1 Intercepting MPI Calls
Pilgrim uses the MPI profiling interface (PMPI) to trap and trace
MPI calls. In order to guarantee completeness, the wrappers were
automatically generated from the MPI standard documents (Latex
files). The reason we use Latex files instead of MPI header files as
input is that we need to know the direction of each function param-
eter (i.e., input, output, or both) and this information is normally
not presented in header files. To be specific, we used MPI 4.0 RC [3]
to generate the wrappers. Before compiling Pilgrim, a filtering pass
is done automatically to remove the calls that are not supported
by the local MPI implementation. This step is required because the
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targeted MPI can be an older version that does not support recently
added MPI calls.

Eventually, the generated wrapper for each MPI function has
the following format:

prologue();
PMPI_*(); // calls the original function
epilogue();

We need to store the value of each input parameter in the pro-
logue and the value of each output parameter in the epilogue. This is
one reason why we need both. The other is to compute the duration
of the MPI call. The prologue code records the starting timestamp
and starts a timer. All the remaining steps (3, 4, and 5) are performed
in the epilogue code.

3.2 Compressing Timing Information
Pilgrim by default keeps only statistical timing information for each
call signature. In the CST, we keep the average for calls’ duration.
This adds negligible overhead and does not change the patterns in
the grammar since the information is associated with each entry in
the CST.

However, if more information is required for the analysis, e.g., to
study the skews in collective call invocations, Pilgrim is also able to
store non-aggregated timing information. Lossless compression of
time values does not save much space so, instead, we provide a lossy
compression with a user tunable relative error. In this mode, Pilgrim
keeps the duration and interval for each MPI call, where duration is
the elapsed time of the call, and interval is measured between two
calls with an identical call signature. In post-processing, we can use
the duration and interval to infer the entry time (noted as 𝑡𝑠𝑡𝑎𝑟𝑡 )
and the exit time (noted as 𝑡𝑒𝑛𝑑) for every MPI call. Timestamps
are most useful when the clocks of distinct processors are well
synchronized. This can be achieved by synchronization techniques
that take advantage of MPI [13, 15], or of hardware support [21].

We choose to keep the duration and interval instead of 𝑡𝑠𝑡𝑎𝑟𝑡 and
𝑡𝑒𝑛𝑑 because they have relatively smaller values and are easier to
compress. Here are some observations that enable the compression
for the duration and interval especially for calls in a loop:

(1) Functions with the same call signature should have similar
durations. But network congestion, system noise and other
irregularities introduce variations.

(2) Functions with the same call signature should have similar
intervals if they occur in a loop and each iteration of the
loop takes the same time to execute. Again, variations exist
and irregular codes might show even larger divergences.

We bin durations using exponential bins. A duration of 𝑑 will be
represented by 𝑑 = ⌈log𝑏 𝑑⌉. The relative error in duration will be
at most 𝑏 −1. The base 𝑏 can be specified by users on a per-function
basis. Intervals are handled as follows: Assume that a call occurs
at time 𝑡 and the previously stored interval representations for
calls with the same signature are 𝑖1, . . . , 𝑖𝑘 . Then the new adjusted
interval is 𝑖𝑘+1 = 𝑡 − ∑𝑘

𝑗=1 𝑏
𝑖 𝑗 ; this interval will be encoded as

𝑖𝑘+1 = ⌈log𝑏 𝑖𝑘+1⌉. This scheme ensures that the wall clock time for
each call will be recovered with a relative error of at most 𝑏 − 1.

Based on the observations above, the sequences of durations and
of intervals should also exhibit some recurring patterns just like

MPI calls. Therefore, we use the Sequitur algorithm again to build
two separate grammars (one for each sequence) to compress them.

3.3 Encoding Function Parameters
The objective of Pilgrim is to keep as much information as pos-
sible. One challenge is that, for many function parameters, their
values obtained at execution time are not significant and are hard
to compress. For example, in the MPI_Send() call, there is a void*
buf parameter that points to the memory buffer that the caller
wants to send. However, in most cases, the absolute address (or the
actual content) of the memory buffer provides little information
yet requires many bytes to store.

A similar point can be made about all MPI opaque objects: One
wants to know what the object represents, not the value of the
pointer or the integer that references it. For this, one needs to be
able to associate calls that created the object with calls that use the
object. To achieve this, Pilgrim uses locally unique symbolic repre-
sentations for all MPI objects and memory pointers, so that later we
can compare and match them across different calls. For example, an
MPI datatype created by MPI_Type_indexed() and later used in
MPI_Send() will have the same symbolic id in both calls. Since the
arguments of the MPI_Type_indexed() call are also preserved, this
allows recreating the layout of the send buffer, or properly replay-
ing the call. An MPI communicator created by MPI_Comm_split()
and used later in MPI_Send() will have the same symbolic id in
both calls. This allows recreating the communicator’s group and the
rank of each group member. As for all other basic type parameters
(e.g., numeric values and strings), we simply store their values.

Here, we first describe the symbolic representation algorithm
for MPI objects and leave memory pointers in Section 3.3.3 as they
require some additional work.

For each process and each MPI object type, Pilgrim maintains
a mapping between the object of that type and its symbolic id.
Pilgrim also maintains a pool of free ids so that every time a new
object is created we can give it an unused id from the pool. When
an object is released (manually by calls like MPI_Type_free() or
automatically by the MPI library for MPI_Request objects), Pilgrim
will revoke its id and return it to the pool. In most cases, only a
small number of ids are used as the application either reuses the
same objects or frees the old objects before allocating more.

Other than being able to compare symbolic ids in different calls,
another advantage of this design is that if different processes create
MPI objects in the same order (as most regular codes tend to do),
they will get the same sequence of symbolic ids, which helps the
inter-process compression.

In the rest of this section, we will describe some of the object
types that require special treatment. Pilgrim is designed to handle all
MPI calls; due to the space limit, we only cover the implementation
of some the more difficult cases.

3.3.1 MPI_Comm. A parameter of type MPI_Comm is required by
all MPI communication calls. Unlike other MPI objects where the
symbolic id is only locally unique, we make sure that all processes
that belong to the same communicator will get the same id, in
order to help compression and help the matching process at the
post-mortem phase. The algorithm for this follows three steps:
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(1) Every process in the group of the new communicator checks
for the maximum symbolic id locally assigned to a commu-
nicator.

(2) An all-reduce operation is used to get the group-wide maxi-
mum symbolic id.

(3) Every process in the group uses one plus the maximum id
retrieved from the last step as the symbolic id for the newly
created communicator.

The group-wide maximum is required so as to avoid assigning the
same id to different communicators at the same process.

The above algorithm only works for blocking intra-communicator
creation calls such as MPI_Comm_split(). Inter-communicators are
handled differently as we are not able to perform all-reduce on an
inter-communicator. The solution is to create a temporary intra-
communicator by merging the inter-communicators and then use
the same algorithm mentioned above. The non-blocking commu-
nicator creation calls such as MPI_Comm_idup() are even trickier,
as we can not issue a blocking all-reduce within a non-blocking
call. Instead, we have to use a non-blocking all-reduce call and
keep track of the MPI request generated from it. Later, when we
intercepted MPI_Waitxxx() or MPI_Testxxx() calls we check the
completed requests to see if the symbolic id has been received.

3.3.2 MPI_Status. The MPI_Status structure includes five fields
as shown below.

struct MPI_Status {
int count; // Number of received entries
int cancelled; // if the request was cancelled
int MPI_SOURCE; // Source of the msg
int MPI_TAG; // Tag value of the msg
int MPI_ERROR; // Error associated with the msg

}

The fields of this structure will be filled after the return of theMPI
calls, unless the input argument is MPI_STATUS_IGNORE. Pilgrim
keeps only two fields of it: MPI_SOURCE and MPI_TAG as they are
important for matching communication calls. The fields count and
cancelled can be inferred during post-processing and MPI_ERROR
in most times is just zero so we ignore them for current implemen-
tation.

3.3.3 Memory Pointers. We assign symbolic ids to MPI objects so
that the call creating such an object can be matched with the calls
using it. In order to achieve the same goal for memory pointers,
we intercept memory management calls including malloc, calloc,
realloc, and free. We also intercept CUDA memory allocation
calls such as cudaMalloc, cudaMallocManaged and cudaHostAlloc,
and keep track of the device location of the allocated memory. We
use an AVL tree to keep track of the currently allocated memory
segments. Each node represents a segment and nodes are sorted
according to the starting address of the segment. In addition, each
node stores the segment’s size and its assigned symbolic id. The
search for the segment containing an address will take, on average,
𝑂 (log𝑁 ) where 𝑁 is the current number of nodes in the AVL tree.
For each communication buffer, we keep the symbolic id of the
containing segment, and optionally, the device location and the
displacement from the segment’s start.

This handles all memory buffers that are allocated on the heap.
For stack variables, since malloc/free calls are not invoked, we
assign them an id when they were accessed, and the allocated size
is assumed to be one byte to be conservative.

3.4 Optimizations
In this section, we discuss some important optimizations applied by
Pilgrim. These optimizations are mostly needed for inter-process
compression.

3.4.1 Common Communication Patterns. One side benefit of the
CST and CFG based compression method is it compresses well
for common communication patterns. For example, regular and
static communication patterns, whether point-to-point or collec-
tive calls will have the identical call signatures across loop iter-
ations, thus they will only be stored once, due to intra-process
compression. Another example is provided by applications that
use symmetric collective communications, such as MPI_Allgather
or MPI_Allreduce, where all the calling processes pass the same
argument values. The call signatures will be stored only once, due
to inter-process compression.

The next section discusses additional optimizations that target
regular stencil communication patterns. We leave to future work
other important special cases.

3.4.2 Relative Ranks. In point-to-point calls such as MPI_Send()
and MPI_Recv(), parameters src and dst are used to specify the
source and destination rank. It is a common pattern that one rank
sends and receives messages to and from its neighbors, e.g., in
regular stencil codes. For example, consider the pseudocode below,
which shows a simple 1-D communication pattern.

for {
... // computation
MPI_Recv(src = my_rank - 1);
MPI_Send(dst = my_rank + 1);

}

This code produces different call signatures for the two calls
across ranks because src and dst are different on different ranks.
A run with 𝑁 ranks will produce 2𝑁 call signatures, which is bad
for inter-process compression.

The solution for this issue is straightforward: Instead of keeping
the actual values of src and dst, we keep the relative value based
on the caller’s rank. In this way, the above code will produce only
two unique call signatures regardless of the number of ranks. Note
that this simple method also works for regular multi-dimensional
communication patterns (Section 4.1).

Moreover, this encoding schema works not only for source and
destination, but also for the parameters that are possibly rank-
related (e.g., tag in communication calls and color and key in com-
municator creation calls).

3.4.3 Id of MPI_Request Objects. For most MPI objects, the order of
creation, usage, and finalization are deterministic. The MPI_Request
objects, however, can exhibit randomness because the order of non-
blocking communications completion can be non-deterministic.
Requests may be freed in different order at distinct iterations and,
therefore, the allocation of symbolic ids can differ, impairing com-
pression.



SC ’21, November 14–19, 2021, St. Louis, MO, USA Chen Wang, Pavan Balaji, and Marc Snir

Consider the example below, every MPI_Request object should
be assigned a free id from the pool of free ids as mentioned in
Section 3.3. Assume the pool is initially empty, then the order of ids
assigned within each iteration totally depends on the completion
order of the calls, which is non-deterministic. As a result, the code
is very likely to produce different patterns of call signatures across
iterations.

for {
MPI_Irecv(from = my_rank + 1, &req1);
MPI_Irecv(from = my_rank + 2, &req2);
MPI_Irecv(to = my_rank + 3, &req3);
while(!(all requests finished)) {

MPI_Waitany([req1, req2, req3]);
handle received message;

}
}

The root cause for this is that our algorithm keeps one pool of free
ids for the same object type. To address this issue, for MPI_Request,
we maintain a separate pool for each unique call signature, not
including the request in the signature. With this modification, the
three requests in the above example will always get the same ids at
every iteration regardless of the request completion order.

3.5 Inter-process Compression
Until now, we have discussed how does Pilgrim encode and com-
press function and function parameters. In the end, each process
will produce its own CST and CFG, which contain all the informa-
tion required to recover the original MPI calls for this one process.

An HPC application can run on millions of processes and will
result in huge trace files if we keep the CST and CFG separately
for each process. Inter-process compression is, therefore, critical
to avoid this linear increase in trace size. The assumption that
the inter-process compression is based on is that many processes
tend to call MPI functions in the same order and with the same or
similar parameters. Thanks to the symbolic representations and the
optimizations described earlier in this section, we should be able to
compress the CST and CFG across processes.

3.5.1 CST. The total number of function calls will increase linearly
with the number of processes, with weak scaling. But the number
of unique call signatures may grow more slowly if calls have the
same signature on different processes, as it turns out to be the case
for many codes. We leverage this redundancy by merging all CSTs
and keeping only globally unique call signatures. We use a parallel
merge algorithm with 𝑙𝑜𝑔2𝑃 phases of pairwise merges, where 𝑃 is
the number of processes. When the merge is completed, the root
process broadcasts the merged CST and every process updates its
grammar so as to use the new symbols assigned to call signatures.

Figure 3 shows an example of this process for two MPI ranks.
Each rank has only two entries in their CST and one of them has
the same call signature. After the merging process, the merged CST
will contain three call signatures and the last one MPI_Comm(comm3)
will be given a new terminal symbol (3) as its old terminal symbol
(2) has already been used. If rank 0 performs this merging task, then
it will send back the merged CST to rank 1 so rank 1 can update its
grammar accordingly.

2

1

TerminalCall Signature

MPI_Comm_barrier(comm1)

MPI_Comm_barrier(comm2)

CST of Rank 0

2

1

TerminalCall Signature

MPI_Comm_barrier(comm1)

MPI_Comm_barrier(comm2)

Compressed CST

3MPI_Comm_barrier(comm3)

2

1

TerminalCall Signature

MPI_Comm_barrier(comm1)

MPI_Comm_barrier(comm3)

CST of Rank 1

Figure 3: Example of inter-process compression for CSTs.

3.5.2 CFG. Grammars are also expected to have redundancies
because, in scientific codes, different processes tend to execute
the same code blocks (thus the same sequence of MPI calls) but
with different data. The symbolic representation we use for pointers
often allocates the same symbol to corresponding buffers at different
processes, resulting in identical signatures.

The algorithm for inter-process compression of grammars is
similar to the one used for compressing the CSTs: Pairwise merges
are executed in parallel until all grammars are merged. When two
grammars are merged, a new rule 𝑆 → 𝑆1𝑆2 is generated where
𝑆1 and 𝑆2 are new names for the root non-terminal of the two
grammars, so as to concatenate the lists of the two processes. The
names of non-terminals are changed in order to prevent conflicts.
The merged grammar encodes the concatenation of the process
traces.

Before we merge two grammars, we first check if the two gram-
mars are identical. If they are identical, the merge is more efficient
as we only keep one of them and do not rename rules. Once all
grammars have been merged, we run another Sequitur pass to
compress the merged grammar. The identity check is important
because it reduces merged grammar size which can significantly
reduce the time required for the final Sequitur pass. This check can
be done very quickly using a memory comparison operation as our
grammar is stored internally as an array of integers. We will show
later in Section 4 that in many programs most processes produce
identical grammars. We use a simple example (Figure 4) to illustrate
this process. The grammars merged in the first pass are identical so
we only need to concatenate the two starting rules. At the second
pass, the two merged grammars are not identical. Thus, each rule
needs to be checked and updated separately to solve conflicts (e.g.,
𝑋 from rank 2 is renamed to 𝑍 ). Finally, a Sequitur pass is run,
which compresses the merged grammar.

As for the decompression, it is simply a process of recursive rule
application. If the leftmost non-terminal symbol is always expanded
first, then the traces of the successive ranks will be obtained in rank
order. Parallelism can be easily applied to the decompression; it is
also simple to extract the trace of any selected process.

4 EVALUATION
We evaluate Pilgrim by answering the following questions: (1)What
is the trace size for large scale runs? (2) How do trace size and
overhead scale with the number of iterations and the number of
processes? (3) How does Pilgrim compare with other systems? In
all the experiments, the trace records preserve the values of all the
arguments of the MPI calls, and the compression is lossless (except
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Rank 0

Rank 1
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Rank 0
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Rank 0

S →W2 Z4
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Y → c d
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Rank 0

First merge pass

Second merge pass
Sequitur pass

Figure 4: Example of inter-process compression for gram-
mars.

Type Code

Benchmark 2D and 3D Stencils
OSU Micro-Benchmarks [5]

Mini app NAS Parallel Benchmark [4]
Production app FLASH [2] and MILC [1]

Table 2: Codes used for evaluation

timing); each MPI call that uses an MPI object can be matched to
the call that initialized this object. Thus, we can recover complete
information on the original MPI calls. As we developed both com-
pressor and decompressor, we can check correctness by comparing
uncompressed traces to compressed next decompressed traces.

We selected a variety of codes for the evaluation, as shown in
Table 2. The experiments were conducted on two clusters: Catalyst
at LLNL and Theta at ANL. The hardware specifications are given
in Table 3. Theta was used to run MILC, all other experiments were
run on Catalyst.

Spec Catalyst Theta

Compute Node Intel Xeon E5-2695 Intel KNL 7230
Cores 24 64
Memory 128GB DDR4 192GB DDR4
Network IB QDR Aries Dragonfly

Table 3: Hardware specification

4.1 Benchmarks
Thanks to the relative rank optimization described in Section 3.4,
Pilgrim compresses perfectly for regular stencil codes. The trace file
size does not change with the number of iterations or the number
of processes beyond a certain number.

The stencil codes we tested were a 2D 5-points non-periodical
boundary stencil and a 3D 7-points stencil with periodical bound-
aries. They both use MPI_Isend(), MPI_Irecv() and MPI_Waitall()

for communication. The meshes are distributed using a block distri-
bution on a mesh of processes of the same number of dimensions.
Therefore, on an 𝑀 × 𝑁 Cartesian mesh of processes, process 𝑖
will communicate with processes 𝑖 ± 1 (horizontal direction) or
𝑖 ± 𝑁 (vertical direction); boundary processes may communicate
with MPI_PROC_NULL. There are 9 possible communication patterns
(four corners, four sides, and interior). All patterns appear when a
3× 3 mesh is used. Indeed, the compressed trace size does not grow
beyond 9 processes.

Similarly, for the 3D periodical boundary stencil, there will be
at most 27 different communication patterns, and the size of the
compressed trace does not grow beyond 27 processes.

We also tested all OSUMicro-benchmarks except osu_latency_mt
as Pilgrim currently does not support multi-threaded MPI programs.
Again, Pilgrim can compress perfectly across processes and itera-
tions for all programs included in OSU Micro-benchmarks. Most
programs result in a trace file size of a few kilobytes. We do not
include the results here due to the page limit.

4.2 Pilgrim vs. ScalaTrace
Here, we compare the scalability of Pilgrim with ScalaTrace. Sca-
laTrace was built from the latest source code (V4). We configured
ScalaTrace to retain tags (ignored by default) and use lossless trac-
ingwhere possible.We selected six class CNAS parallel benchmarks
(NPB) and ran them with increasing numbers of processes (SP and
BT require a square number of processes to run on).

Trace sizes are shown in Figure 5 for different NAS benchmarks
and different process counts. For all tested benchmarks, Pilgrim
achieves a smaller trace file size while keeping more information.
In addition, Pilgrim’s trace size scales better than ScalaTrace’s in
the number of processes. ScalaTrace experienced a linear growth
in all cases except LU whereas Pilgrim only exhibited sub-linear
growth rates. The advantage comes from the CST and CFG based
intra-process and inter-process compression. Although more com-
munication patterns occurred as we increase the number of pro-
cesses, not all of them are totally new. LU is special in that it has a
behaviour similar to the stencil codes we discussed previously. For
Pilgrim, the trace size stopped increasing after 16 processes, which
suggests that all patterns had occurred at 16 processes.

4.3 Scientific Applications
In this section, we evaluate Pilgrim using scientific simulations and
discuss additional factors that affect the compression ratio.

We first tested three simulations that come with the FLASH pack-
age, namely Sedov, Cellular, and StirTurb. All are 3D simulations
with I/O disabled. In order to add more variances into the simu-
lations, we disabled the adaptive mesh refinement (AMR) feature
for Sedov and StirTurb and kept it for Cellular. Sedov and Cellular
crashed at the MPI_Waitall() call when running with ScalaTrace.
So we had to comment out the wrapper for MPI_Waitall() in Scala-
Trace to run these two simulations. In other words, MPI_Waitall()
calls were not traced by ScalaTrace for Sedov and Cellular.

Figure 6 shows how the trace size scales with the number of
processes and the number of iterations. We also plotted on the sec-
ondary y-axis the total number of MPI calls Pilgrim encountered. In
comparison with ScalaTrace, Pilgrim produced smaller traces and
showed better scalability in all cases. Figure 6 (a-c) suggests that
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Figure 5: Comparison of trace file size with NPB

the trace size of ScalaTrace growths in proportion to the number of
MPI calls. In comparison, the trace size of Pilgrim stopped growing
at 64 processors for StirTurb, 128 processors for Sedov, and 1,024
processors for Cellular. Presumably, all signatures were encoun-
tered with these numbers of processors. Figure 6 (e-f) shows the
results of running the same simulations using 4K processors but
with an increasing number of iterations. As expected, the number
of MPI calls increased linearly in the number of iterations. StirTurb
without the AMR produced constant size trace files for both tools.
But for Sedov and Cellular, the more iterations we ran the larger
the trace size. However, the causes are different. Cellular internally
uses the PARAMESH library to perform parallel AMR. It builds a
hierarchy of sub-grids to form the compute domain. These sub-grid
blocks are stored using a tree data-structure. At each refinement
phase, new child blocks will be created and added. The blocks are
sorted in Morton order so as to compute a load-balanced parti-
tion with good locality. Afterwards, data blocks may be moved
across processes in order to rebalance the load. The communication
is performed using point-to-point calls: Isend, Irecv, and Waitall.
The communication pattern changes at each each refinement. And
the trace size grows as more refinements occur. The trace size of
Sedov grows slowly once a few hundred iterations due to some
extra MPI_Send/MPI_Recv with new sources and destinations be-
ing called. This is caused by the output mechanism where Rank
0 asks for the current minimum simulation time delta; the source
of that datum changes every few hundred iterations. It is worth
noting that Pilgrim can store complete traces from the hundreds
of millions of MPI calls generated by a multi-minute run with 4K
processes in 2.5MB for Cellular and just 4KB for StirTurb without
AMR.

Figure 7 shows the execution time of the same FLASH simula-
tions with and without tracing. The problem size per processor was
kept fixed while increasing the number of processors (weak scaling).
This set of experiments were designed to evaluate the overhead of

Pilgrim. Pilgrim’s overhead comes from two sources: intra-process
compression overhead due to the construction of CFG and CST;
and the inter-process compression at the finalize point. The first
part scales well because the intra-process compression is totally in-
dependent across processors. For the latter part, compressing CSTs
normally takes negligible time, while the compression for CFGs
dominates and is largely due to the sequential final Sequitur pass.
And this overhead depends on the number of unique grammars.
Fortunately, in most cases there are only a few unique grammars.

ScalaTrace achieved comparable overhead for StirTurb but a
much larger overhead for the other two simulations. It took several
times longer to run Sedov and Cellular with ScalaTrace at large
scales. We observed that this slow down of ScalaTrace mostly hap-
pened at the refinement time when a burst of non-blocking calls
occurred. On the other hand, Pilgrim incurred a maximum overhead
of 21%, 29%, and 4% for Sedov, Cellular, and StirTurb. The largest
numbers of unique grammars were 74, 498, and 2 respectively. Fig-
ure 8 shows Pilgrim’s overhead components. As we can see, the
inter-process compression for CSTs took up only a tiny fraction of
the total time. As expected, the more unique grammars there were,
the more time was spent on inter-process compression.

Finally, we ran a MILC simulation using up to 16K processors.
The simulation code was taken from MILC’s source tree
(clover_dynamical). The algorithm we used is su3_rmd (refreshed
molecular dynamics algorithm). Both strong scaling and weak scal-
ing were performed. For the strong scaling, the problem size was
set to 64 × 64 × 64 × 32 and for the weak scaling the problem size
per processor was fixed at 16× 16× 16× 32. The simulation crashed
when running with ScalaTrace, so in Figure 9 we only show the
results for Pilgrim. One interesting finding is that the trace size
did not change for weak scaling, where we observed 27 unique
grammars regardless of the process count. The simulation took
around 10 minutes to finish when running on 16K processors for
weak scaling and the produced trace file was only 627KB. For strong
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Figure 6: Comparison of trace file size with FLASH simulations. (a-c) show the scalability with respect of the number of pro-
cesses; (d-f) show how the trace size scales with the number of iterations.
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Figure 7: Execution time of FLASH simulations. Note that in (d) and (e) the execution times are plotted in logarithmic scale
due to the large range.

scaling, we observed three “stages”: 27 unique grammars at 64 pro-
cessors, 54 unique grammars for runs with 128 to 1,024 processors,
and 108 grammars for 2,048 processors and more. Accordingly, the
more unique grammars were observed, the larger the trace file was
generated. Even though, with 16K processors, the trace file was
only about 1MB.

4.4 Non-aggregated Timing Information
As described in Section 3.2, Pilgrim has the ability to store non-
aggregated but lossy timing information. However, unlike the MPI
call sequence, the timing information is more difficult to compress
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due to the intrinsic non-determinism. A trade-off between accuracy
and overhead has to be made when storing the timing information.

We evaluate our algorithm for storing timing information using
the NAS benchmarks with up to 1,024 processors. The relative error
was set to 20%, i.e., 𝑏 = 1.2. Figure 10 shows the produced interval
grammar size and duration grammar size. We observed a linear
or near linear growth rate in all cases, which suggests that the
inter-process compression for timing grammars is not as effective
as for MPI calls. Pilgrim required 486MB for the interval grammar
and 50MB for the duration grammar in the worst cases (SP and CG
at 1,024 processors). In those cases, Pilgrim traced 234 million and
98 million MPI calls from SP and CG, which yields a compression
ratio of 3.8× and 15.68×, respectively.

5 RELATED WORK
Significant research efforts have been made in the area of commu-
nication profiling and tracing. Many tools have been developed
during the years: profiling tools such as AutoPerf [8], mpiP [31],
and IPM [26], and tracing tools like Recorder [34], Vampir [17],
TAU [25], Score-P [18], ScalaTrace [35], and Cypress [37]. In this
section, we focus on tracing tools as they are more related to our
work.

Several tools including Score-p, Vampir and TAU support a trac-
ing format named OTF [16] or some optimized versions of it, e.g.,
OTF2 [10], OTFX [32] and [33]. OTF is a rather general format in
that it is not limited only to communication events. It uses ZLIB com-
pression to reduce the trace size but the inter-process compression
is not supported. Tools based on it generally lack structure-aware
compression, which reduces the compression rate.

Recorder [34] traces both communication and I/O events and it
uses a sliding window based approach to compress similar events
within the window. But it cant not detect loop structures nor rep-
etitions at long ranges. Xu et al. [36] introduced a framework for
identifying the maximal loop nest. Their algorithm can also dis-
cover long range repeating communication patterns. However, both
of these two tools do not perform inter-process compression, which
is essential at large scales.

ParLOT [29] is a whole program tracing library built on top
of Pin [20] that traces all function calls (but not their arguments).
It performs incremental online compression so that each process
will never store uncompressed information. The compression is
achieved using two general purpose compression algorithms, which
may not take advantage of the loop structures.

Similar to Pilgrim, Krishnamoorthy et al. [19] proposed a frame-
work that augments the Sequitur algorithm to compress commu-
nication traces. The major limitation is that for each intercepted
function call, only a small number of parameters are encoded and
stored. This helps the compression rate as calls with different signa-
tures can be combined, if they differ in the ignored parameters; but
this discards important information. In addition, the inter-process
compression does not fully exploit the possible redundancy between
grammars. It merges rules from multiple grammars without the
redundancy check, which can lead to a high overhead for regular
SPMD programs.

ScalaTrace [23] mainly focuses on recording communication
events and features on-the-fly compression. It extends regular sec-
tion descriptors (RSD) to exploit the patterns of repeating communi-
cation events involved in loop structures. It was designed for SPMD
style programs where there is no inconsistent program behavior
across processes or time steps. ScalaTrace II [35] addresses this
limitation of its predecessor. The intra-node and inter-node loop
detection algorithms was redesigned to improve the compression
effectiveness for scientific codes that demonstrate inconsistent be-
havior across time steps and processes. More recently, Bahmani
and Mueller [6, 7] proposed a signature based clustering algorithm
and context-aware clustering algorithm for ScalaTrace II to fur-
ther improve the inter-process compression. However, they require
markers to be inserted into the user code so as to inform the frame-
work to run the clustering algorithm. The user is responsible for
finding good locations for the markers.
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Overall, ScalaTrace and its successors follow a bottom-up ap-
proach that first compresses the traces locally within each process
and then performs an inter-process compression at finalizing point.
In comparison, Cypress [37] took a top-down approach where it
first runs a static pass offline to retrieve the loop and branch in-
formation of the targeting program and then performs the intra-
process compression at runtime. The static pass relies on compiler
analysis and normally is more efficient and accurate than online
loop detection. The key limitation of Cypress however is that it
requires the user’s code to be first converted into the format of
LLVM IR. Also many functions are not recorded or compressed by
Cypress (Table 1), including some popular ones like MPI_Wait().
Moreover, both ScalaTrace and Cypress require the user’s program
to be linked against their library. Pilgrim, on the other hand, per-
forms runtime instrumentation so it does not need to access or
rebuild user’s program.

One important goal of Pilgrim is to provide insights to MPI
developers who are deploying MPI to the next-generation super-
computers. It is important that we cover a complete set of MPI
functions and all involved parameters. As far as we know, none
of the existing work achieves this. They either miss some func-
tions or keep only part of the parameters. And many corner cases
are ignored to simplify the implementation or to achieve a higher
compression ratio.

6 CONCLUSION
In this paper, we presented a scalable and near lossless MPI trac-
ing tool. In comparison with existing tools, the key advantage of
Pilgrim is that it captures the complete set of MPI calls and their pa-
rameters. The proposed CFG and CST based compression algorithm
empowers the near lossless tracing at large scales. The evaluation
showed that Pilgrim preserves more information with less space
and lower overhead.

One limitation of the current implementation is that it does
not support multi-threaded MPI programs that are initialized with
MPI_THREAD_MULTIPLE. Moreover, since Pilgrim uses its own trace
format, existing post-processing tools can not be used directly with
Pilgrim traces. We have developed a decoder that decompresses and
decodes the traces into original uncompressed trace records. For
the post-processing tools, we are currently working on a mini-app
generator that could automatically generate a proxy MPI program
that has the same communication patterns as of captured in the
traces. It can be helpful for reproducing communication patterns
that have performance issues. Another direction is to develop a
converter that converts Pilgrim traces into some existing trace
formats (e.g., OTF).

ACKNOWLEDGMENTS
This research was supported by NSF OAC grant 19-09144 and by the
Exascale Computing Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration, and by the U.S. Department of
Energy, Office of Science, under Contract DE-AC02-06CH11357.

We thank Dr. Yanfei Guo for his gracious help.

REFERENCES
[1] 2016. MILC Code Version 7. http://www.physics.utah.edu/~detar/milc/milc_qcd.

html.
[2] 2019. Flash Center for Computational Science. http://flash.uchicago.edu.
[3] 2020. MPI: A Message-Passing Interface Standard Version 4.0 (Draft). https:

//www.mpi-forum.org/docs/drafts/mpi-2020-draft-report.pdf.
[4] 2020. NAS Parallel Benchmarks. https://www.nas.nasa.gov/publications/npb.

html.
[5] 2020. OSU Micro-Benchmarks 5.7. http://mvapich.cse.ohio-state.edu/

benchmarks.
[6] Amir Bahmani and Frank Mueller. 2017. Scalable Communication Event Tracing

via Clustering. J. Parallel and Distrib. Comput. 109 (2017), 230–244.
[7] Amir Bahmani and Frank Mueller. 2018. Chameleon: Online Clustering of MPI

Program Traces. In 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 1102–1112.

[8] Sudheer Chunduri, Scott Parker, Pavan Balaji, Kevin Harms, and Kalyan Kumaran.
2018. Characterization of MPI Usage on a Production Supercomputer. In SC18:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 386–400.

[9] Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, and Rob Ross. 2015. Using
formal grammars to predict I/O behaviors in HPC: The omnisc’IO approach. IEEE
Transactions on Parallel and Distributed Systems 27, 8 (2015), 2435–2449.

[10] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolf-
gang E Nagel, and Felix Wolf. 2011. Open Trace Format 2: The Next Generation
of Scalable Trace Formats and Support Libraries. In PARCO, Vol. 22. 481–490.

[11] Markus Geimer, Felix Wolf, Brian JN Wylie, Erika Ábrahám, Daniel Becker, and
Bernd Mohr. 2010. The Scalasca Performance Toolset Architecture. Concurrency
and Computation: Practice and Experience 22, 6 (2010), 702–719.

[12] Tobias Hilbrich, Martin Schulz, Bronis R de Supinski, and Matthias S Müller. 2010.
MUST: A Scalable Approach to Runtime Error Detection in MPI Programs. In
Tools for high performance computing 2009. Springer, 53–66.

[13] Sascha Hunold and Alexandra Carpen-Amarie. 2018. Hierarchical Clock Syn-
chronization in MPI.. In CLUSTER. 325–336.

[14] Nikhil Jain, Abhinav Bhatele, Sam White, Todd Gamblin, and Laxmikant V Kale.
2016. Evaluating HPC Networks via Simulation of Parallel Workloads. In SC’16:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 154–165.

[15] Terry Jones and Gregory A Koenig. 2010. A Clock Synchronization Strategy
for Minimizing Clock Variance at Runtime in High-End Computing Environ-
ments. In 2010 22nd International Symposium on Computer Architecture and High
Performance Computing. IEEE, 207–214.

[16] Andreas Knüpfer, Ronny Brendel, Holger Brunst, Hartmut Mix, and Wolfgang E
Nagel. 2006. Introducing theOpen Trace Format (OTF). In International Conference
on Computational Science. Springer, 526–533.

[17] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber,
Holger Mickler, Matthias S Müller, and Wolfgang E Nagel. 2008. The Vampir
Performance Analysis Tool-Set. In Tools for high performance computing. Springer,
139–155.

[18] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, et al. 2012. Score-P: A Joint Performance Measurement Run-Time Infras-
tructure for Periscope, Scalasca, TAU, and Vampir. In Tools for High Performance
Computing 2011. Springer, 79–91.

[19] Sriram Krishnamoorthy and Khushbu Agarwal. 2010. Scalable Communication
Trace Compression. In 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing. IEEE, 408–417.

[20] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
Acm sigplan notices 40, 6 (2005), 190–200.

[21] Mellanox. 2020. Highly Accurate Time Synchronization with ConnectX-3 and
TimeKeeper.

[22] Craig G Nevill-Manning and Ian H Witten. 1997. Identifying Hierarchical Struc-
ture in Sequences: A linear-time algorithm. Journal of Artificial Intelligence
Research 7 (1997), 67–82.

[23] Michael Noeth, Prasun Ratn, FrankMueller, Martin Schulz, and Bronis R De Supin-
ski. 2009. ScalaTrace: Scalable Compression and Replay of Communication Traces
for High Performance Computing. J. Parallel and Distrib. Comput. 69, 8 (2009),
696–710.

[24] Robert Preissl, Martin Schulz, Dieter Kranzlmüller, Bronis R. de Supinski, and
Daniel J. Quinlan. 2008. Using MPI Communication Patterns to Guide Source
Code Transformations. In Computational Science – ICCS 2008, Marian Bubak,
Geert Dick van Albada, Jack Dongarra, and Peter M. A. Sloot (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 253–260.

[25] Sameer Shende, Allen D Malony, Wyatt Spear, and Karen Schuchardt. 2011.
Characterizing I/O Performance Using the TAU Performance System. In PARCO.
647–655.

http://www.physics.utah.edu/~detar/milc/milc_qcd.html
http://www.physics.utah.edu/~detar/milc/milc_qcd.html
http://flash.uchicago.edu
https://www.mpi-forum.org/docs/drafts/mpi-2020-draft-report.pdf
https://www.mpi-forum.org/docs/drafts/mpi-2020-draft-report.pdf
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
http://mvapich.cse.ohio-state.edu/benchmarks
http://mvapich.cse.ohio-state.edu/benchmarks


SC ’21, November 14–19, 2021, St. Louis, MO, USA Chen Wang, Pavan Balaji, and Marc Snir

[26] David Skinner. 2005. Performance Monitoring of Parallel Scientific Applications.
Technical Report. Ernest Orlando Lawrence Berkeley National Laboratory, Berke-
ley, CA (US).

[27] Sukhdeep Sodhi and Jaspal Subhlok. 2005. Automatic Construction and Evalua-
tion of Performance Skeletons. In 19th IEEE International Parallel and Distributed
Processing Symposium. IEEE, 10–pp.

[28] Sukhdeep Sodhi, Jaspal Subhlok, and Qiang Xu. 2008. Performance Prediction
with Skeletons. Cluster Computing 11, 2 (2008), 151–165.

[29] Saeed Taheri, Sindhu Devale, Ganesh Gopalakrishnan, and Martin Burtscher.
2017. ParLOT: Efficient Whole-program Call Tracing for HPC Applications. In
Programming and Performance Visualization Tools. Springer, 162–184.

[30] Mustafa M Tikir, Michael A Laurenzano, Laura Carrington, and Allan Snavely.
2009. PSINS: An Open Source Event Tracer and Execution Simulator for MPI
Applications. In European Conference on Parallel Processing. Springer, 135–148.

[31] Jeffrey S Vetter and Michael O McCracken. 2001. Statistical Scalability Analy-
sis of Communication Operations in Distributed Applications. In Proceedings
of the eighth ACM SIGPLAN symposium on Principles and practices of parallel
programming. 123–132.

[32] Michael Wagner, Jens Doleschal, and Andreas Knüpfer. 2015. MPI-focused Trac-
ing with OTFX: An MPI-aware In-memory Event Tracing Extension to the Open

Trace Format 2. In Proceedings of the 22nd European MPI Users’ Group Meeting.
ACM, 7.

[33] Michael Wagner, Andreas Knupfer, and Wolfgang E Nagel. 2012. Enhanced
Encoding Techniques for the Open Trace Format 2. Procedia Computer Science 9
(2012), 1979–1987.

[34] Chen Wang, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gonsiorowski.
2020. Recorder 2.0: Efficient parallel I/O tracing and analysis. In 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 1–8.

[35] Xing Wu and Frank Mueller. 2013. Elastic and Scalable Tracing and Accurate
Replay of Non-Deterministic Events. In Proceedings of the 27th international ACM
conference on International conference on supercomputing. 59–68.

[36] Qiang Xu, Jaspal Subhlok, and Nathaniel Hammen. 2010. Efficient Discovery
of Loop Nests in Execution Traces. In 2010 IEEE International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems.
IEEE, 193–202.

[37] Jidong Zhai, Jianfei Hu, Xiongchao Tang, Xiaosong Ma, and Wenguang Chen.
2014. Cypress: Combining Static and Dynamic Analysis for Top-Down Communi-
cation Trace Compression. In SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 143–153.


	Abstract
	1 Introduction
	2 Overview
	2.1 CFG and CST
	2.2 Optimized Sequitur Algorithm

	3 Implementation
	3.1 Intercepting MPI Calls
	3.2 Compressing Timing Information
	3.3 Encoding Function Parameters
	3.4 Optimizations
	3.5 Inter-process Compression

	4 Evaluation
	4.1 Benchmarks
	4.2 Pilgrim vs. ScalaTrace
	4.3 Scientific Applications
	4.4 Non-aggregated Timing Information

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

